Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 40, Issue 2

Issues

On the use of a simple primary productivity model to assess the skill of a physical ocean model

Lakshmi Kantha
  • University of Colorado, Boulder, CO, USA
  • Institute of Marine Sciences (CNR-ISMAR), Venice Section, Castello 2737/F, I-30122, Venice, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandro Carniel / Carol Clayson / Mauro Sclavo
Published Online: 2011-06-02 | DOI: https://doi.org/10.2478/s13545-011-0019-2

Abstract

Ecosystem models, used mainly in studying the interactions between different trophic levels, can also be used for ocean circulation model skill assessment, with the help of satellite ocean color data. This paper presents how the use of a simple NPZ primary productivity ecosystem model, coupled to a hydrodynamical model, can help assessing the skill of the physical ocean model in depicting realistically the prevailing mesoscale features of the upper layers of the Gulf of Mexico. Results indicate that the physical model effectively reproduces the mesoscale features of circulation underlying the resulting chlorophyll concentrations, especially when circulation fronts exist.

Keywords: operational oceanography; coupled physical-biochemical models; ocean color; skill assessment; primary productivity; chlorophyll concentrations

  • [1] Carniel S., Umgiesser G., Kantha L.H., Monti S. and M. Sclavo, 2002. Tracking the drift of a human body in the coastal ocean using Numerical Prediction Models of the oceanic, atmospheric and wave conditions. Science & Justice, 42(3), pp. 143–151 http://dx.doi.org/10.1016/S1355-0306(02)71819-4CrossrefGoogle Scholar

  • [2] Forristall, G.Z., K.J. Schaudt, C.K. Cooper, 1992. Evolution and kinematics of a Loop Current Eddy in the Gulf of Mexico during 1985, J. Geophys. Res., 97, 2173–2184. http://dx.doi.org/10.1029/91JC02905CrossrefGoogle Scholar

  • [3] Rixen M., Book J.W., Carta A., Grandi V., Gualdesi L., Stoner R., Ranelli P., Cavanna A., et al., 2009. Improved ocean prediction skill and reduced uncertainty in the coastal region from multi-model super-ensembles. Journal of Marine Systems, 78, S282–S289. DOI: 10.1016/j.jmarsys.2009.01.014 http://dx.doi.org/10.1016/j.jmarsys.2009.01.014CrossrefGoogle Scholar

  • [4] Kantha, L.H., 2005. Development, testing and implementation of a real-time nowcast/forecast capability for the Gulf of Mexico, Monthly Kaiyo (Japan), 37, 239–256. Google Scholar

  • [5] Taillandier V., Griffa A., Poulain P.-M., Signell R.P., Chiggiato J. and S. Carniel, 2008. Variational analysis of drifter positions and model outputs for the reconstruction of surface currents in the Central Adriatic during fall 2002. Journal of Geophysical Research — Ocean, 113, C04004. DOI: 10.1029/2007JC004148 http://dx.doi.org/10.1029/2007JC004148CrossrefWeb of ScienceGoogle Scholar

  • [6] Kantha, L.H., J.-K. Choi, K.J. Schaudt and C.K. Cooper, 2005. A regional data-assimilative model for operational use in the Gulf of Mexico, in Circulation in the Gulf of Mexico: Observations and Models, eds. W. Sturges and A. Lugo-Fernandez, American Geophysical Union, 165–180. Google Scholar

  • [7] Brooks, D.A., and R.V. Legeckis, 1982. A ship and satellite view of hydrographic features in the Gulf of Mexico. J. Geophys. Res., 87, 4195–4206. http://dx.doi.org/10.1029/JC087iC06p04195CrossrefGoogle Scholar

  • [8] Kuznetsov, L., M. Toner, A.D. Kirwan, Jr., C.K.R.T. Jones, L. Kantha and J. Choi, 2002, The Loop Current and adjacent rings delineated by Lagrangian analysis of the near-surface flow. J. Mar. Res., 60, 405–429. http://dx.doi.org/10.1357/002224002762231151CrossrefGoogle Scholar

  • [9] Toner, M., A.D. Kirwan, Jr., A.C. Poje, L.H. Kantha, F.E. Muller-Karger and C.K.R.T. Jones, 2003, Chlorophyll dispersal by eddy-eddy interactions in the Gulf of Mexico. J. Geophys. Res., 108(C4), 3105, DOI:10.1029/ 2002JC001499. http://dx.doi.org/10.1029/2002JC001499CrossrefGoogle Scholar

  • [10] Bignami F., Sciarra R., Carniel S. and R. Santoleri, 2007. The variability of the Adriatic sea coastal turbid waters from SeaWiFS imagery. Journal of Geophysical Research — Ocean, 112, C03S10. DOI: 10.1029/2006JC003518 http://dx.doi.org/10.1029/2006JC003518CrossrefGoogle Scholar

  • [11] Kirwan, A.D., Jr., W.J. Merrell, Jr., J.K. Lewis, and R.E. Whitaker, 1984. Lagrangian observations of an anti-cyclonic ring in the western Gulf of Mexico, J. Geophys. Res., 89, 3417–3424. http://dx.doi.org/10.1029/JC089iC03p03417CrossrefGoogle Scholar

  • [12] Choi, J.-K., L.H. Kantha, and R.R. Leben, 1995. “A Nowcast/Forecast Experiment Using TOPEX/Poseidon and ERS-1 Altimetric Data Assimilation Into a Three-Dimensional Circulation Model of the Gulf of Mexico” IUGG, XXI General Assembly, Boulder, Colorado, July 1995. Google Scholar

  • [13] Onken R., Robinson A.R., Kantha L.H., Lozano C.J., Haley J.P. and S. Carniel, 2005. Inter-model nesting and rapid data exchange in distributed systems. Journal of Marine Systems, 56(1–2), 45–66. DOI: 10.1016/j.marsys.2004.09.010 http://dx.doi.org/10.1016/j.jmarsys.2004.09.010CrossrefGoogle Scholar

  • [14] Hamilton, P., 1992. Lower continental slope cyclonic eddies in the central Gulf of Mexico. J. Geophys. Res., 97, 2185–2200. http://dx.doi.org/10.1029/91JC01496CrossrefGoogle Scholar

  • [15] Biggs, D.C., 1992. Nutrients, plankton, and productivity in a warm-core ring in the western Gulf of Mexico. J. Geophys. Res., 97, 2143–2154. http://dx.doi.org/10.1029/90JC02020CrossrefGoogle Scholar

  • [16] Elliott, B.A., 1982. Anticyclonic rings in the Gulf of Mexico, J. Phys. Oceanogr., 12, 1293–1309. http://dx.doi.org/10.1175/1520-0485(1982)012<1292:ARITGO>2.0.CO;2CrossrefGoogle Scholar

  • [17] Sturges, W., J.C. Evans, W. Holland, and S. Welsh, 1993. Separation of warm core rings in the Gulf of Mexico, J. Phys. Oceanogr., 23, 250–268. http://dx.doi.org/10.1175/1520-0485(1993)023<0250:SOWCRI>2.0.CO;2CrossrefGoogle Scholar

  • [18] Vukovich, F.M., and B.W. Crissman 1986. Aspects of warm rings in the Gulf of Mexico. J. Geophys. Res., 91, 2645–2660. http://dx.doi.org/10.1029/JC091iC02p02645CrossrefGoogle Scholar

  • [19] Vukovich, F.M., and G.A. Maul, 1985. Cyclonic eddies in the eastern Gulf of Mexico. J. Phys. Oceanogr., 15, 105–117. http://dx.doi.org/10.1175/1520-0485(1985)015<0105:CEITEG>2.0.CO;2CrossrefGoogle Scholar

  • [20] Carniel, S., Vichi, M., and M. Sclavo, 2007. Sensitivity of a coupled physical-biological model to turbulence: high frequency simulations in a northern Adriatic station. Chemistry and Ecology, 23(2), pp. 157–175. DOI: 10.1080/02757540701197903 http://dx.doi.org/10.1080/02757540701197903CrossrefWeb of ScienceGoogle Scholar

  • [21] Kantha, L.H., 2004. A general ecosystem model for applications to primary productivity and carbon cycle studies in the global oceans. Ocean Modeling, 6, 285–334. http://dx.doi.org/10.1016/S1463-5003(03)00022-2CrossrefGoogle Scholar

  • [22] Chu, P.C., L.M. Ivanov, and T.M. Margolina, 2007. On non-linear sensitivity of marine biological models to parameter variations. Ecological Modelling, 206, 369–382. http://dx.doi.org/10.1016/j.ecolmodel.2007.04.006CrossrefGoogle Scholar

About the article

Published Online: 2011-06-02

Published in Print: 2011-06-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 40, Issue 2, Pages 86–95, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-011-0019-2.

Export Citation

© 2011 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in