Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 40, Issue 3

Issues

Effects of polycyclic aromatic hydrocarbons exposure on antioxidant system activities and proline content in Kandelia candel

Hui Song
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
  • Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences, Shenzhen, 518121, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ You-Shao Wang
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
  • Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences, Shenzhen, 518121, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cui-Ci Sun
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
  • Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences, Shenzhen, 518121, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mei-Lin Wu
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
  • Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences, Shenzhen, 518121, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ya-Lan Peng
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
  • Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences, Shenzhen, 518121, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chao Deng
  • State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
  • Marine Biology Research Station at Daya Bay, Chinese Academy of Sciences, Shenzhen, 518121, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qian Li
  • Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-08-24 | DOI: https://doi.org/10.2478/s13545-011-0024-5

Abstract

The antioxidant system effects of Kandelia candel were investigated under four different levels of PAH stress. The activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), the responses to the change of malondialdehyde (MDA) contents and the accumulation of proline in K. candel were determined. Our results suggested that the activities of SOD, CAT, POD increased significantly in leaves and roots of K. candel (p≤0.05) with the increase of the external PAH concentrations, while in stems, the activities of these antioxidant enzymes were all significantly inhibited (p≤0.01). We also observed an increase of MDA in leaves, stems and roots, and an obvious correlation between MDA content and PAH concentrations in three locations, which showed that the change of MDA content could be used as a biomarker of K. candel under PAH stress. The proline content was found remarkably enhanced in leaves, stems and roots. However, a significant inverse correlation was observed between the proline content and SOD (r=−0.99, p≤0.01), POD (r=−0.95, p≤0.05) activities in stems. This study suggested that the antioxidative system of K. candel has an obvious organ-dependent feature when exposed to PAH contamination as revealed by discriminant analysis (DA).

Keywords: Mangrove plant; Kandelia candel; PAH stress; antioxidant enzymes; MDA; proline

  • [1] Alia P.M., Matysik J., 2001, Effect of proline on the production of singlet oxygen, Amino Acids, 21: 195–200 http://dx.doi.org/10.1007/s007260170026CrossrefGoogle Scholar

  • [2] Alscher R.G., Erturk N., Heath L.S., 2002, Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 53: 1331–1341 http://dx.doi.org/10.1093/jexbot/53.372.1331CrossrefGoogle Scholar

  • [3] Bailly C., Benamar A., Corbineau F., Come D., 1996, Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seed as related to deterioration during accelerated aging, Physiol. Plantarum, 97: 104–110 http://dx.doi.org/10.1111/j.1399-3054.1996.tb00485.xCrossrefGoogle Scholar

  • [4] Bayen S., Wurl O., Karuppiah S., Sivasothi N., Lee H.K., Obbard J.P., 2005, Persistent organic pollutants in mangrove food webs in Singapore, Chemosphere, 61: 303–313 http://dx.doi.org/10.1016/j.chemosphere.2005.02.097CrossrefGoogle Scholar

  • [5] Beauchamp C., Fridovich I., 1971, Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 44: 276–287 http://dx.doi.org/10.1016/0003-2697(71)90370-8CrossrefGoogle Scholar

  • [6] Bradford M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Anal. Biochem., 72: 248–254 http://dx.doi.org/10.1016/0003-2697(76)90527-3CrossrefGoogle Scholar

  • [7] Candan N., Tarhan L., 2003, Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg 2+deficiency in the Mentha pulegium leaves, Plant Physiol. Bioch., 41: 35–40 http://dx.doi.org/10.1016/S0981-9428(02)00006-2CrossrefGoogle Scholar

  • [8] Chen J.X., Wang X.F., 2006, The Laboratory Illustration of Plant Physiology, South China University of Techonology Press, Guang Zhou Google Scholar

  • [9] Chen J., Wong M.H., Wong Y.S., Tam N.F.Y., 2008, Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment, Mar. Pollut. Bull., 57: 695–702 http://dx.doi.org/10.1016/j.marpolbul.2008.03.013CrossrefGoogle Scholar

  • [10] Chiang D.A., Lin N.P., 2000, Partial correlation of fuzzy sets, Fuzzy Set Syst., 110: 209–215 http://dx.doi.org/10.1016/S0165-0114(98)00081-5CrossrefGoogle Scholar

  • [11] Duke N.C., Watkinson A.J., 2002, Chlorophyll-deficient propagules of Avicennia marina and apparent longer term deterioration of mangrove fitness in oil-polluted sediments, Mar. Pollut. Bull., 44:1269–1276 http://dx.doi.org/10.1016/S0025-326X(02)00221-7CrossrefGoogle Scholar

  • [12] Dutrieux E., Martin F., Debry A., 1990, Growth and mortality of Sonneratia caseolaris planted on an experimentally oil-polluted soil, Mar. Pollut. Bull., 21: 62–68 http://dx.doi.org/10.1016/0025-326X(90)90189-FCrossrefGoogle Scholar

  • [13] Flowers-Geary L., Bleczinski W., Harvey R.G., Penning M.T., 1996, Cytotoxicity and mutagenicity of polycyclic aromatic hydrocarbon oquinones produced by dihydrodiol dehydrogenase, Chemico-Biol. Interact., 99: 55–72 http://dx.doi.org/10.1016/0009-2797(95)03660-1CrossrefGoogle Scholar

  • [14] Fridovich I., 1986, Biological effects of the superoxide radical, Arch. Biochem. Biophys., 247: 1–11 http://dx.doi.org/10.1016/0003-9861(86)90526-6CrossrefGoogle Scholar

  • [15] Gao Y., Zhu L., 2004, Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils, Chemosphere, 55: 1169–1178 http://dx.doi.org/10.1016/j.chemosphere.2004.01.037CrossrefGoogle Scholar

  • [16] Gill S.S., Tuteja N., 2010, Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Bioch., 48: 909–930 http://dx.doi.org/10.1016/j.plaphy.2010.08.016CrossrefGoogle Scholar

  • [17] Hare P.D., Cress W.A., 1997, Metabolic implications of stress-induced proline accumulation in plants, Plant Growth Regul., 21: 79–102 http://dx.doi.org/10.1023/A:1005703923347CrossrefGoogle Scholar

  • [18] Imlay J.A., Linn S., 1988, DNA damage and oxygen radical toxicity, Science, 240: 1302–1309 http://dx.doi.org/10.1126/science.3287616CrossrefGoogle Scholar

  • [19] Jaleel C.A., Riadh K., Gopi R., Manivanan P., Inès J., Al-Juburi H.J., Chang-Xing Z., Hong-Bo S., Panneerselvam R., 2009, Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints, Acta Physiol. Plant, 31: 427–436 http://dx.doi.org/10.1007/s11738-009-0275-6CrossrefGoogle Scholar

  • [20] Ke L., Wang W.Q., Wong T.W.Y., Wong Y.S., Tam N.F.Y., 2003a, Removal of pyrene from contaminated sediments by mangrove microcosms, Chemosphere, 51: 25–34 CrossrefGoogle Scholar

  • [21] Ke L., Wong T.W.Y., Wong A.H.Y., Wong Y.S., Tam N.F.Y., 2003b, Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings, Chemosphere, 52: 1581–1591 http://dx.doi.org/10.1016/S0045-6535(03)00498-3CrossrefGoogle Scholar

  • [22] Ke L., Yu K.S.H., Wong Y.S., Tam N.F.Y., 2005, Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments, Sci. Total Environ., 340: 177–187 http://dx.doi.org/10.1016/j.scitotenv.2004.08.015CrossrefGoogle Scholar

  • [23] Ke L., Bao W., Chen L., Wong Y.S., Tam N.F.Y., 2009, Effects of humic acid on solubility and biodegradation of polycyclic aromatic hydrocarbons in liquid media and mangrove sediment slurries, Chemosphere, 76: 1102–1108 http://dx.doi.org/10.1016/j.chemosphere.2009.04.022CrossrefGoogle Scholar

  • [24] Klekowski E.J. Jr., Corredor J.E., Morell J.M., del Castillo C.A., 1994, Petroleum pollution and mutation in mangroves, Mar. Pollut. Bull., 28: 166–169 http://dx.doi.org/10.1016/0025-326X(94)90393-XCrossrefGoogle Scholar

  • [25] Landis W.G., Matthews G.B., Matthews R.A., Sergeant A., 1994, Application of multivariate techniques to endpoint determination, selection and evaluation in ecological risk assesement, Environ. Toxicol. Chem., 13:1917–1927 http://dx.doi.org/10.1002/etc.5620131207CrossrefGoogle Scholar

  • [26] Ledford H.K., Niyogi K.K., 2005, Siglet oxygen and photo-oxidative stress management in plants and algae, Plant Cell Environ., 28: 1037–1045 http://dx.doi.org/10.1111/j.1365-3040.2005.01374.xCrossrefGoogle Scholar

  • [27] Li B., Wei J., Wei X., Tang K., Liang Y., Shu K., Wang B., 2008, Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum, Colloids Surface B., 63: 269–275 http://dx.doi.org/10.1016/j.colsurfb.2007.12.012CrossrefGoogle Scholar

  • [28] Liao Y., Chen G.Z., 2007, Physiological adaptability of three mangrove species to salt stress, Acta Ecologica Sinica, 2: 2208–2214 Google Scholar

  • [29] Lin C.C., Kao C.H., 2000, Effect of NaCl stress on H 2O2metabolism in rice leaves, Plant Growth Regul., 30:151–155 http://dx.doi.org/10.1023/A:1006345126589CrossrefGoogle Scholar

  • [30] Liu H., David W., Ye Y., Cui B., Huang Y.H., Colón-Carmona A., Wang Z.H., 2009, An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana, Plant Sci., 176: 375–382 http://dx.doi.org/10.1016/j.plantsci.2008.12.002CrossrefGoogle Scholar

  • [31] Liu J.W., Lin F.K., Wang Y., Xu Z., Zhang X., 2002, Effects of PAHs (naphthalene) Pollution on the Physiological Index of Hydrophyte, Journal of East China University of Science and Technology, 28: 520–536 (In Chinese with English summary) Google Scholar

  • [32] Liu Y.Y., Sun H.B., Chen G.Z., Zhao B., Li W.Y., 2007, Eco-physiological responses of Kandelia candel seedlings to polychlorinated biphenyls (PCBs) treatment, Acta Ecologica Sinica 27: 746–754 http://dx.doi.org/10.1016/S1872-2032(08)60011-6CrossrefGoogle Scholar

  • [33] Long E.R., Macdonald D.D., Smith S.L., Calder F.D., 1995, Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments, Environ. Manage., 19: 81–97 http://dx.doi.org/10.1007/BF02472006CrossrefGoogle Scholar

  • [34] McCann J.H., Greenberg B.M., Solomon K.R., 2000, The effect of creosote on the growth of an axenic culture of Myriophyllum spicatum L., Aquat. Toxicol., 50: 265–274 http://dx.doi.org/10.1016/S0166-445X(99)00096-XCrossrefGoogle Scholar

  • [35] McCann J.H., Solomon K.R., 2000, The effect of creosote on membrane ion leakage in Myriophyllum spicatum L., Aquat. Toxicol., 50, 275–284 http://dx.doi.org/10.1016/S0166-445X(00)00105-3CrossrefGoogle Scholar

  • [36] Mittler R., 2002, Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 7: 405–410 http://dx.doi.org/10.1016/S1360-1385(02)02312-9CrossrefGoogle Scholar

  • [37] Olsen G.H., Carroll M.L., Renaud P.E., Ambrose W.G.Jr., Olssøn R., Carroll J.L., 2007, Benthic community response to petroleum-associated components in Arctic versus temperate marine sediments, Mar. Biol., 151: 2167–2176 http://dx.doi.org/10.1007/s00227-007-0650-zCrossrefGoogle Scholar

  • [38] Parida A., Das A.B., Das P., 2002, NaCI stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures, J. Plant Biol., 53: 259–267 Google Scholar

  • [39] Rodríguez-Ortega M.J., Rodríguez-Ariza A., Gómez-Ariza J.L., Muñoz-Serrano A., López-Barea J., 2009, Multivariate discriminant analysis distinguishes metal-from non metal-related biomarker responses in the clam Chamaelea gallina, Mar. Pollut. Bull., 58:64–71 http://dx.doi.org/10.1016/j.marpolbul.2008.09.006CrossrefGoogle Scholar

  • [40] Saradhi P.P., AliaArora A.S., Prasad K.V.S.K., 1995, Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation, Biochem. Bioph. Res. Co., 209: 1–5 http://dx.doi.org/10.1006/bbrc.1995.1461CrossrefGoogle Scholar

  • [41] Shetty P., Atallah M.T., Shetty K., 2002, Effects of UV treatment on the proline-linked pentose phosphate pathway for phenolics and L-DOPA synthesis in dark germinated Vicia faba, Process Biochem., 37: 1285–1295 http://dx.doi.org/10.1016/S0032-9592(02)00013-4CrossrefGoogle Scholar

  • [42] Singh S., Saxena R., Pandey K., Bhatt K., Sinha S., 2004, Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential, Chemosphere, 57: 1663–1673 http://dx.doi.org/10.1016/j.chemosphere.2004.07.049CrossrefGoogle Scholar

  • [43] Sinha S., Basant A., Malik A., Singh K., 2009, Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L, Ecotoxicology, 18: 555–566 http://dx.doi.org/10.1007/s10646-009-0313-6CrossrefGoogle Scholar

  • [44] Tam N.F.Y., Ke L., Wang X.H., Wong Y.S., 2001, Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps, Environ. Pollut. 114: 255–263 http://dx.doi.org/10.1016/S0269-7491(00)00212-8CrossrefGoogle Scholar

  • [45] Tam N.F.Y., 2006, Pollution Studies on Mangroves in Hong Kong and Mainland China, Springer Netherlands Google Scholar

  • [46] Tian Y., Luo Y.R., Zheng T.L., Cai L.Z., Cao X.X., Yan C.L., 2008, Contamination and potential biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments of Xiamen, China, Mar. Pollut. Bull., 56: 1184–1191 http://dx.doi.org/10.1016/j.marpolbul.2008.02.014CrossrefGoogle Scholar

  • [47] Wieczorek J.K., Wieczorek Z.J., 2007, Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants, Ecotoxicol. Environ. Saf., 66: 369–377 http://dx.doi.org/10.1016/j.ecoenv.2005.10.002CrossrefGoogle Scholar

  • [48] Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montaqu M., Inzé D., Van Camp W., 1997, Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants EMBO J.,, 16: 4806–48 http://dx.doi.org/10.1093/emboj/16.16.4806CrossrefGoogle Scholar

  • [49] Wu Y., Chen Y., Yi Y., Shen Z., 2009, Responses to copper by the moss Plagiomnium cuspidatum: Hydrogen peroxide accumulation and the antioxidant defense system, Chemosphere, 74:1260–1265 http://dx.doi.org/10.1016/j.chemosphere.2008.10.059CrossrefGoogle Scholar

  • [50] Xin M., Dao-hui L., Yi X., Yuan-yuan W., You-ying T., 2009, Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves, Food Chem., 115: 569–573 http://dx.doi.org/10.1016/j.foodchem.2008.12.053CrossrefGoogle Scholar

  • [51] Yong Y.E., Tam N.F.Y., 2007, Effects of used lubricating oil on two mangroves Aegiceras corniculatum and Avicennia marina, J. Environ. Sci., 19: 1355–1360 http://dx.doi.org/10.1016/S1001-0742(07)60221-6CrossrefGoogle Scholar

  • [52] Yu K.S.H., Wong A.H.Y., Yau K.W.Y., Wong Y.S., Tam N.F.Y., 2005a, Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments, Mar. Pollut. Bull., 51: 1071–1077 http://dx.doi.org/10.1016/j.marpolbul.2005.06.006CrossrefGoogle Scholar

  • [53] Yu S.H., Ke L., Wong Y.S., Tam N.F.Y., 2005b, Degradation of polycyclic aromatic hydrocarbons (PAHS) by a bacterial consortium enriched from mangrove sediments, Environ. Int., 31: 149–154 http://dx.doi.org/10.1016/j.envint.2004.09.008CrossrefGoogle Scholar

  • [54] Zhang D.Z., Wang P.H., Zhao H.X., 1990, Determination of the content of free proline in wheat leaves, Plant Phys. Commun., 4: 62–65 Google Scholar

  • [55] Zhang J., Cai L., Yuan D., Chen M., 2004, Distribution and sources of polynuclear aromatic hydrocarbons in Mangrove surficial sediments of Deep Bay, China, Mar. Pollut. Bull., 49: 479–486 http://dx.doi.org/10.1016/j.marpolbul.2004.02.030CrossrefGoogle Scholar

  • [56] Zhang C.G., Leung K.K., Wong Y.S., Tam N.F.Y., 2007a, Germination, growth and physiological responses of mangrove plant (Bruguiera gymnorrhiza) to lubricating oil pollution, Environ. Exp. Bot., 60: 127–136 http://dx.doi.org/10.1016/j.envexpbot.2006.09.002CrossrefGoogle Scholar

  • [57] Zhang F.Q., Wang Y.S., Lou Z.P., Dong J.D., 2007b, Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza), Chemosphere, 67: 44–50 CrossrefGoogle Scholar

  • [58] Zhang L.Z., Wei N., Wu Q.X., Ping M.L., 2007c, Anti-oxidant response of Cucumis sativus L. to fungicide carbendazim, Pestic. BioChem. Phys., 89: 54–59 http://dx.doi.org/10.1016/j.pestbp.2007.02.007CrossrefGoogle Scholar

  • [59] Zhao S.J., Xu C.C., Zou Q., Meng Q.W., 1994, Improvements of method for measurement of malondialdehyde in plant tissues, Plant Phys. Commun., 30: 207–210 Google Scholar

  • [60] Zheng G.J., Man B.K.W., Lam J.C.W., Lam M.H.W., Lam P.K.S., 2002, Distribution and sources of polycyclic aromatic hydrocarbons in the sediment of a sub-tropical coastal wetland, Water Res., 36: 1457–1468 http://dx.doi.org/10.1016/S0043-1354(01)00363-3CrossrefGoogle Scholar

  • [61] Zhou H.W., Luan T.G., Zou F., Tam N.F.Y., 2008, Different bacterial groups for biodegradation of three- and four-ring PAHs isolated from a Hong Kong mangrove sediment, J. Hazard. Mater., 152: 1179–1185 http://dx.doi.org/10.1016/j.jhazmat.2007.07.116CrossrefGoogle Scholar

About the article

Published Online: 2011-08-24

Published in Print: 2011-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 40, Issue 3, Pages 9–18, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-011-0024-5.

Export Citation

© 2011 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Ingrid Lenoir, Joël Fontaine, Benoît Tisserant, Frédéric Laruelle, and Anissa Lounès-Hadj Sahraoui
Mycorrhiza, 2017, Volume 27, Number 5, Page 465
[3]
Mariusz Kluska, Beata Łopuszyńska, and Joanna Jabłońska
Ochrona Srodowiska i Zasobów Naturalnych, 2016, Volume 27, Number 4
[5]
Gonasageran Naidoo
Marine Pollution Bulletin, 2016, Volume 110, Number 1, Page 362
[6]
Jolanta Wieczorek, Stanisław Sienkiewicz, Monika Pietrzak, and Zbigniew Wieczorek
Ecotoxicology and Environmental Safety, 2015, Volume 115, Page 19
[7]
Xiaoming Yin, Xiao Liang, Rong Zhang, Ling Yu, Guohua Xu, Quansuo Zhou, and Xinhua Zhan
Environmental and Experimental Botany, 2015, Volume 113, Page 59
[8]
Moez Shiri, Mokded Rabhi, Abdelhak El Amrani, and Chedly Abdelly
International Journal of Phytoremediation, 2015, Volume 17, Number 10, Page 925
[9]
M. Bourioug, L. Alaoui-Sossé, X. Laffray, N. Raouf, M. Benbrahim, P.-M. Badot, and B. Alaoui-Sossé
Arabian Journal for Science and Engineering, 2014, Volume 39, Number 7, Page 5325
[11]
Na Liu, Luqing Pan, XiaoLi Gong, Yanxia Tao, Yanyan Hu, and Jingjing Miao
Ecotoxicology, 2014, Volume 23, Number 2, Page 122
[12]
Štěpán Zezulka, Marie Kummerová, Petr Babula, and Lucie Váňová
Aquatic Toxicology, 2013, Volume 140-141, Page 37

Comments (0)

Please log in or register to comment.
Log in