Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 40, Issue 3


Communities of heterotrophic protists (protozoa) in the near-bottom zone of the Gdańsk Basin

Krzysztof Rychert
Published Online: 2011-08-24 | DOI: https://doi.org/10.2478/s13545-011-0031-6


Biomass and generic diversity of heterotrophic protists (protozoa) were studied in the near-bottom zone at five stations located in the inner Gulf of Gdańsk and in offshore waters during June 2002. The highest protozoan biomass was observed in the inner Gulf of Gdańsk and close to the mouth of the Vistula River. Protozoan biomass decreased offshore. In well-oxygenated waters heterotrophic flagellates constituted 39–51%, of the protozoan biomass, ciliates constituted 18–25%, and heterotrophic dinoflagellates 29–39% of the protozoan biomass. These findings confirmed previous studies that showed that a high abundance of heterotrophic dinoflagellates is a distinct feature of the Gulf of Gdańsk. At one station located in the Gdańsk Deep, where the near-bottom zone was anoxic, the contribution of heterotrophic flagellates decreased to 18% and ciliates’ share increased to 82% of the protozoan biomass. No dinoflagellates were observed in the anoxic zone.

Keywords: heterotrophic protists; protozoa; near-bottom zone; Gdańsk Basin

  • [1] Arndt H., 1991, On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea, Int. Revue ges. Hydrobiol., 76: 387–396 http://dx.doi.org/10.1002/iroh.19910760311CrossrefGoogle Scholar

  • [2] Azam F., Fenchel T., Field J. D., Gray J. S., Meyer-Reil L. A., Thingstad F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10: 257–263 http://dx.doi.org/10.3354/meps010257CrossrefGoogle Scholar

  • [3] Beers J. R., Stewart G. L., 1969, The vertical distribution of microzooplankton and some ecological observations, J. Cons. Int. Explor. Mer., 33: 30–44 CrossrefGoogle Scholar

  • [4] Boikova E., 1984, Ecological character of protozoans (Ciliata, Flagellata) in the Baltic Sea, Ophelia, Suppl. 3: 23–32 Google Scholar

  • [5] Børsheim K. Y., Bratbak G., 1987, Cell volume to carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater, Mar. Ecol. Prog. Ser., 36: 171–175 http://dx.doi.org/10.3354/meps036171CrossrefGoogle Scholar

  • [6] Bralewska J. M., Witek Z., 1995, Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk, Mar. Ecol. Prog. Ser., 117: 241–248 http://dx.doi.org/10.3354/meps117241CrossrefGoogle Scholar

  • [7] Caron D. A., 1983, Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures, Appl. Envir. Microbiol., 46,2: 491–498 Google Scholar

  • [8] Caron D. A., Swanberg N. R., 1990, The ecology of planktonic sarcodines, Aquat. Sci., 3: 147–180 Google Scholar

  • [9] Dolan J. R., Coats D. W., 1991, Changes in fine-scale vertical distributions of ciliate microzooplankton related to anoxia in Chesapeake Bay waters, Mar. Microb. Food Webs, 5: 81–93 Google Scholar

  • [10] Edler L. (ed.), 1979, Recommendations on methods for marine biological studies, Baltic Mar. Biol. Publs. 5 Google Scholar

  • [11] Foissner W., Berger H., 1996, A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in river, lakes, and waste waters, with notes on their ecology, Freshw. Biol., 35: 375–482 Google Scholar

  • [12] Fenchel T., 1969, The ecology of marine microbentos. IV. Structure and function of the benthic ecosystem, Ophelia, 6: 1–182 Google Scholar

  • [13] Fenchel T., Kristensen L. D., Rasmussen L., 1990, Water column anoxia: vertical zonation of planktonic protozoa, Mar. Ecol. Prog. Ser., 62: 1–10 http://dx.doi.org/10.3354/meps062001CrossrefGoogle Scholar

  • [14] Kirchman D. L., Williams P. J. Le B., 2000, Introduction [in:] Microbial ecology of the oceans, Ed. Kirchman D. L., New York, Wiley-Liss, pp. 1–11 Google Scholar

  • [15] Kopacz M., Witek Z., 1987, Seasonal changes in composition and biomass of zooplankton in the coastal zone of the Gulf of Gdańsk, Reports of the Sea Fisheries Institute 1984–1985: 44–45, (in Polish) Google Scholar

  • [16] Mackiewicz T., 1991, Composition and seasonal changes of nanoflagellates in the Gdańsk Basin (Southern Baltic), Acta Ichthyol. Piscat., 21Suppl.: 125–134 Google Scholar

  • [17] Marshall S. M., 1969, Protozoa. Order: Tintinnida, Cons. Int. Explor. Mer, Zooplankton Sheets: 117–127 Google Scholar

  • [18] Putt M., Stoecker D., 1989, An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters, Limnol. Oceanogr., 34: 1097–1103 http://dx.doi.org/10.4319/lo.1989.34.6.1097CrossrefGoogle Scholar

  • [19] Rogerson A, Laybourn-Parry J., 1992, The abundance of marine naked amoebae in the water column of the Clyde Estuary, Est. Coast. Shelf Sci., 34: 187–196 http://dx.doi.org/10.1016/S0272-7714(05)80104-0CrossrefGoogle Scholar

  • [20] Rogerson A., Anderson O. R., Vogel C., 2003, Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res., 25: 1359–1365 http://dx.doi.org/10.1093/plankt/fbg102CrossrefGoogle Scholar

  • [21] Rychert K., 2004, The size structure of Mesodinium rubrum population in the Gdańsk Basin, Oceanologia, 46: 439–444 Google Scholar

  • [22] Setälä O., 1991, Ciliates in the anoxic deep water layer of the Baltic, Arch. Hydrobiol., 122: 483–492 Google Scholar

  • [23] Setälä O., Kivi K., 2003, Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact, Aquat. Microb. Ecol., 32: 287–297 http://dx.doi.org/10.3354/ame032287CrossrefGoogle Scholar

  • [24] Sherr E. B., Sherr B. F., 1988, Role of microbes in pelagic food webs: A revised concept, Limnol. Oceanogr., 33: 1225–1227 http://dx.doi.org/10.4319/lo.1988.33.5.1225CrossrefGoogle Scholar

  • [25] Sherr E. B., Sherr B. F., 1993, Preservation and storage of samples for enumeration of heterotrophic protists [in:] Handbook of methods in Aquatic Microbial Ecology, Eds. Kemp P. F., Sherr B. F., Sherr E. B., Cole J. J., Boca Raton, Levis Publishers, pp. 207–212 Google Scholar

  • [26] Sherr E. B., Sherr B. F., 2002, Significance of predation by protists in aquatic microbial food webs, Antonie Leeuwenhoek, 81: 293–308 http://dx.doi.org/10.1023/A:1020591307260CrossrefGoogle Scholar

  • [27] Smetaček V., 1981, The annual cycle of protozooplankton in the Kiel Bight, Mar. Biol., 63: 1–11 http://dx.doi.org/10.1007/BF00394657CrossrefGoogle Scholar

  • [28] Strüder-Kypke M. C., Montagnes D. J. S., 2002, Development of web-based guides to planktonic protests, Aquat. Microb. Ecol., 27: 203–207 http://dx.doi.org/10.3354/ame027203CrossrefGoogle Scholar

  • [29] Suzuki T., Taniguchi A., 1998, Standing crop and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a, Mar. Biol., 132: 375–382 http://dx.doi.org/10.1007/s002270050404CrossrefGoogle Scholar

  • [30] Thomsen H. A. (ed.), 1992, Plankton i de indre danske farvande. Analyse af forekomsten af alger og heterotrofe protister (ekskl. ciliater) i Kattegat, Havforskning fra Miløstyrelsen, 11, pp. 331, (in Danish) Google Scholar

  • [31] Urrutxurtu I., Orive E., de la Sota A., 2003, Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay), Est. Coast. Shelf Sci., 57: 1169–1182 http://dx.doi.org/10.1016/S0272-7714(03)00057-XCrossrefGoogle Scholar

  • [32] Utermöhl H., 1931, Neue Wege in der quantitativen Erfassung des Planktons, Verh. Int. Verein. Theor. Angew. Limnol., 5: 567–596 Google Scholar

  • [33] Verity P. G., Langdon C., 1984, Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay, J. Plankton Res., 6: 859–867 http://dx.doi.org/10.1093/plankt/6.5.859CrossrefGoogle Scholar

  • [34] Witek M., 1998, Annual Changes of Abundance and Biomass of Planktonic Ciliates in the Gdańsk Basin, Southern Baltic, Internat. Rev. Hydrobiol, 83: 163–182 http://dx.doi.org/10.1002/iroh.19980830207CrossrefGoogle Scholar

  • [35] Witek Z., 1995, Biological production and its utilization within a marine ecosystem in the Western Gdańsk Basin, Gdynia, Sea Fisheries Institute, pp. 145, (in Polish) Google Scholar

  • [36] Wrzesińska-Kwiecień M., Mackiewicz T., 1995, Protozooplankton of the Pomeranian Bay (Southern Baltic), Bull. Sea Fish. Inst., 136: 89–95 Google Scholar

About the article

Published Online: 2011-08-24

Published in Print: 2011-09-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 40, Issue 3, Pages 68–73, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-011-0031-6.

Export Citation

© 2011 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Krzysztof Rychert, Katarzyna Spich, Kinga Laskus, Michalina Pączkowska, Magdalena Wielgat-Rychert, and Gracjan Sojda
Oceanological and Hydrobiological Studies, 2013, Volume 42, Number 3

Comments (0)

Please log in or register to comment.
Log in