Jump to ContentJump to Main Navigation
Show Summary Details

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2015: 0.519
5-year IMPACT FACTOR: 0.688

SCImago Journal Rank (SJR) 2015: 0.287
Source Normalized Impact per Paper (SNIP) 2015: 0.435
Impact per Publication (IPP) 2015: 0.594

Online
ISSN
1897-3191
See all formats and pricing




Blooms of toxin-producing Cyanobacteria — a real threat in small dam reservoirs at the beginning of their operation

1Department of Hydrobiology, University of Life Sciences in Lublin, ul. Akademicka 13, 20-950, Lublin, Poland

2Polish Academy of Sciences, Centre for Ecological Research in Dziekanów Leśny, Experimental Station, ul. Niecała 18, 20-080, Lublin, Poland

© 2011 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Oceanological and Hydrobiological Studies. Volume 40, Issue 4, Pages 30–37, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-011-0038-z, October 2011

Publication History

Published Online:
2011-10-25

Abstract

Large and harmful cyanobacterial blooms appeared in two newly-built artificial reservoirs shortly after being filled with water. Taxonomic composition of cyanobacterial communities was highly variable in both water bodies and fast species replacement was observed. In the first year of the operation of the smaller Konstantynów Reservoir, the mass development of Anabaena flos-aquae and Planktolyngbya limnetica (48.7 and 53.6% of the cyanobacterial abundance) occurred in summer, while in autumn the dominance of Planktothrix agardhii (99.9%, 14.95 × 106 ind. Dm−3) was noted. The surface scum developed in summer consisted of An. flos-aquae that contained high amounts of anatoxin-a (1412.4 μg AN-a dm−3 of scum) and smaller amounts of microcystins (10 μg eq. MC-LR dm−3 of scum). In the larger Kraśnik Reservoir, Aphanizomenon flos-aquae occurred in high abundance in spring and summer, however, it was replaced by different species of Microcystis (1.3 × 107 ind. dm−3) which created thick surface scum. Simultaneously, a hazardous increase in the total concentration of microcystins (from 13.6 to 788.5 μg eq. MC-LR dm−3 of water with scum) and anatoxin-a (from 0.03 to 43.6 μg dm−3) was observed.

Keywords: anatoxin-a; microcystins; dam reservoir; Microcystis; Planktothrix; Anabaena

  • [1] Akcaalan R., Young F.M., Metcalf J.S., Morrison L.F., Albay M., Codd G.A., 2006, Microcystin analysis in single filaments of Planktothrix spp. in laboratory cultures and environmental blooms, Wat. Res., 40: 1583–90 http://dx.doi.org/10.1016/j.watres.2006.02.020 [Crossref]

  • [2] Bucka H., Wilk-Woźniak E., 2007, Pro- and eukaryotic algae in reservoirs of Southern Poland, Kraków, pp. 352 (in Polish)

  • [3] Burchardt L., Goździcka-Józefiak A., Messyasz B., Gąbka M., Dondajewska R., et al., 2009, The influence of temperature gradient and trophic status on phytoplankton structure of Lake Góreckie (Wielkopolski National Park) during winter ice cover, In: Wielkopolski National Park in Natural Studies, Eds. Walna B., Kaczmarek L., Lorenc M., Dondajewska R., Poznań-Jeziory, pp. 11–26 (in Polish)

  • [4] Burchardt L., Pawlik-Skowrońska B., 2005, Blue-green algal blooms — interspecific competition and environmental treat, Wiad. Bot., 49(1/2): 39–49 (in Polish)

  • [5] Carlson R.E., 1977, A trophic state index for lakes, Limnol. Oceanogr., 22: 361–369 http://dx.doi.org/10.4319/lo.1977.22.2.0361 [Crossref]

  • [6] Carmichael W.W., 1992, Cyanobacteria secondary metabolites — the cyanotoxins, J. Appl. Bacteriol., 72: 445–459 http://dx.doi.org/10.1111/j.1365-2672.1992.tb01858.x [Crossref]

  • [7] Chen J., Xie P., Li L., Xu J., 2009, First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage, Toxicol. Sci., 108(1): 81–89 http://dx.doi.org/10.1093/toxsci/kfp009 [Crossref]

  • [8] Chorus I., Bartram J., 1999, Toxic Cyanobacteria in Water: a Guide to Public Health Significance. [in] Monitoring and Management, E & FN Spon/Chapman & Hall, Londyn, pp 416

  • [9] Dawson R.M., 1998, The toxicology of microcystins. Toxicon, 37: 953–962 http://dx.doi.org/10.1016/S0041-0101(97)00102-5 [Crossref]

  • [10] Directive of UE 2006/7/WE, 2006.

  • [11] Dokulil M.T., Teubner K., 2000, Cyanobacterial dominance in lakes, Hydrobiologia, 438; 1–12 http://dx.doi.org/10.1023/A:1004155810302 [Crossref]

  • [12] Furey A., Crowley J., Hamilton B., Lehane M., James K.J., 2005, Strategies to avoid the mis-identyfication of anatoxin-a using mass spectrometry in the forensic investigation of acute neurotoxic poisoning, J. Chromatogr., 1082: 91–97 http://dx.doi.org/10.1016/j.chroma.2005.05.040 [Crossref]

  • [13] Golterman H.L., 1971, Methods for chemical analysis of fresh waters. Blackwell, IBP Handbook no 3, Oxford — Edinburgh, pp. 166

  • [14] Grabowska M., 2005, Cyanoprocaryota blooms in the polyhumic Siemianówka dam Reservoir in 1992–2003, Oceanol. Hydrobiol. Stud., 24(1): 73–85

  • [15] Grabowska M., Pawlik-Skowrońska B., 2008, Replacement of Chroococcales and Nostocales by Oscillatoriales caused a significant increase in microcystin concentrations in a dam reservoir, Oceanol. Hydrobiol. Stud., 37(4): 23–33 http://dx.doi.org/10.2478/v10009-008-0016-y [Crossref]

  • [16] Hardy J., 2008, Washington State Recreational Guidance for Microcystins (Provisional) and Anatoxin-a (Interim/Provisional). Final Report, Washington State Department of Health. Washington, pp 14

  • [17] James K.J., Furey A., Sherlock I.R., Stack M.A., Twohing M. et al., 1998, Sensitive determination of anatoxin-a, homoanatoxin-a and their degradation products by liquid chromatography with fluorometric detection, J. Chromatogr. A., 798: 147–157 http://dx.doi.org/10.1016/S0021-9673(97)01207-7 [Crossref]

  • [18] Jöhnk K., Huisman J., Sharples J., Sommeijer B., Visser P.M., Strooms J.M., 2008, Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol., 14: 495–512 http://dx.doi.org/10.1111/j.1365-2486.2007.01510.x [Crossref]

  • [19] Kabziński K.M., Kabziński K.A., 2006, Toxic cyanobacterial blooms. Medical effects of contact with cyanobacterial blooms, part VI, Bioskop, 1: 13–20 (in Polish)

  • [20] Kardinaal W.E.A., Tonk L., Janse I., Hol. S., Slot P. et al., 2007, Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis, Appl. Environ. Microbiol., 73: 2939–46 http://dx.doi.org/10.1128/AEM.02892-06 [Crossref]

  • [21] Kawecka B., Eloranta V.P., 1994, Outline of ecology of algae from aquatic and terrestrial habitats. PWN, Warszawa, pp 252 (in Polish)

  • [22] Kaya K., Sano T., 1999, Total microcystin determination using erythro-2-methyl-3-(methoxy-d 3)-4-phenylbutyric acid (MMPB-d 3) as the internal standard, Anal. Chim. Acta, 386: 107–112 http://dx.doi.org/10.1016/S0003-2670(99)00012-4

  • [23] Komárek J., Anagnostidis K., 1999, 2000, Süßwasserflora von Mitteleuropa. T1: Chroococcales, Spektrum Akademischer Verlag, GmbH, Heidelberg — Berlin, pp. 548

  • [24] Komárek J., Anagnostidis K., 2005, Süßwasserflora von Mitteleuropa. T2: Oscillatoriales. Spektrum Akademischer Verlag, Elsevier GmbH, München, pp.759

  • [25] Kurmayer R., Christiansen G., 2009, The genetic basis of toxin production in Cyanobacteria, Freshwater Reviews, 2: 31–50

  • [26] Kurmayer R., Christiansen G., Fastner J., Börner T., 2004, Abundance and active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp, Environ. Microbiol., 6: 831–841 http://dx.doi.org/10.1111/j.1462-2920.2004.00626.x [Crossref]

  • [27] Malbrouck C., Kestemont P., 2006, Effects of microcystins on fish, Environ. Toxicol. Chem., 25(1): 72–86 http://dx.doi.org/10.1897/05-029R.1 [Crossref]

  • [28] Mankiewicz-Boczek J., Urbaniak M., Romanowska-Duda Z., Izydorczyk K., 2006, Toxic cyanobacteria strains in lowland dam reservoir (Sulejów Res. central Poland): amplification of MCY genes for detection and identification, Pol. J. Ecol., 54: 171–180

  • [29] Mazur-Marzec H., 2006, Characterization of phycotoxins produced by Cyanobacteria, Oceanol. Hydrobiol. Stud., 35: 85–109

  • [30] Orr P.T., Jones G.J., Hunter R.A., Berger K., De Paoli D.A., Orr C.L.A., 2001, Ingestion of toxic Microcystis aeruginosa by dairy cattle and the implications for microcystin contamination of milk. Toxicon, 39: 1847–1854 http://dx.doi.org/10.1016/S0041-0101(01)00166-0 [Crossref]

  • [31] Osswald J., Rellan S., Carvalho A.P., Gago A., Vasconcelos V., 2007, Acute effects of an anatoxin-a producing cyanobacterium on juvenile fish — Cyprinus carpio L. Toxicon, 49: 693–698 http://dx.doi.org/10.1016/j.toxicon.2006.11.010 [Crossref]

  • [32] Palus J., Dziubałtowska E., Stańczyk M., Lewińska D., Mankiewicz-Boczek J. et al., 2007, Biomonitoring of cyanobacterial blooms in Polish water reservoir and the cytotoxicity and genotoxicity of selected cyanobacterial extracts, Int. J. Occup. Med. Environ. Health., 20(1): 48–65 http://dx.doi.org/10.2478/v10001-007-0008-2 [Crossref]

  • [33] Pawlik-Skowrońska B., Kornijów R., Pirszel J., 2010, Sedimentary imprint of cyanobacterial blooms — a new tool for insight into recent history of lakes, Pol. J. Ecol., 58(4): 663–670

  • [34] Pawlik-Skowrońska B., Pirszel J., Kornijów R., 2008, Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake, Ann. Limnol.-Int. J. Lim., 44(2): 63–68

  • [35] Pawlik-Skowrońska B., Skowroński T., Pirszel J., Adamczyk A., 2004, Relationship between cyanobacterial bloom and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (SE Poland), Pol. J. Ecol., 52(4): 379–390

  • [36] Paerl H.W., 1988, Nuisance phytoplankton blooms in coastal, estuarine and inland waters, Limnol. Oceanogr., 33: 823–847 http://dx.doi.org/10.4319/lo.1988.33.4_part_2.0823 [Crossref]

  • [37] Paerl H.W., 1996, A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments, Phycologia, 35: 25–35 http://dx.doi.org/10.2216/i0031-8884-35-6S-25.1 [Crossref]

  • [38] PN-ISO 10260, 2002, Water quality. Measurement of biochemical parameters. Spectrophotometric determination of chlorophyll-a, PWN, Warszawa, pp. 11 (in Polish)

  • [39] Polučkova A., Hašler P., Kitner M., 2004, Annual cycle of Planktothrix agardhii (Gom.) Anagn. and Kom. nature population, Internat. Rev. Hydrobiol., 89: 278–288 http://dx.doi.org/10.1002/iroh.200310716 [Crossref]

  • [40] Rücker J., Wiedner C., Zippel P., 1997, Factors controlling the dominance of Planktothrix agardii and Limnothrix redekei in eutrophic shallow lakes, Hydrobiology, 342/343: 107–115 http://dx.doi.org/10.1023/A:1017013208039 [Crossref]

  • [41] Scheffer M., Rinaldi S., Gragnani A., Mur L.R., Van Nes E.H., 1997, On the dominance of filamentous Cyanobacteria in shallow, turbid lakes, Ecology, 78(1): 272–282 http://dx.doi.org/10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2 [Crossref]

  • [42] Seip K.L., Reynolds C.S., 1995, Phytoplankton functional attributes along trophic gradient and season, Limnol. Oceanogr., 40: 589–597 http://dx.doi.org/10.4319/lo.1995.40.3.0589 [Crossref]

  • [43] Sivonen K., Niemelä S.I., Niemi R.M., Lepistö L., Luoma T.H., Räsänen L.A., 1990, Toxic Cyanobacteria (blue-green algae) in Finnish fresh coastal waters, Hydrobiologia, 190: 267–275 http://dx.doi.org/10.1007/BF00008195 [Crossref]

  • [44] Smith V.H., 2003, Eutrophication of freshwater and coastal marine ecosystems: A global problem, Environ. Sci. Pollut. Res., 10: 1–14 http://dx.doi.org/10.1065/espr2002.12.142 [Crossref]

  • [45] Tonk L., Visser P.M., Christiansen G., Dittmann E., Snelder E.O.F.M., Wiedner C., Mur L.R., Huisman J., 2005, The microcystin composition of the Cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity, Appl. Environ. Microbiol., 71: 5177–5181 http://dx.doi.org/10.1128/AEM.71.9.5177-5181.2005 [Crossref]

  • [46] Toporowska M., Pawlik-Skowrońska B., 2009, Microcystins produced by Cyanobacteria and their accumulation in ichthyofauna of a hypertrophic lake, [in:] Abstracts of the 21st Conference of Polish Hydrobiologists, Lublin, pp 165

  • [47] Toporowska M., Pawlik-Skowrońska B., Krupa D., Kornijów R., 2010, Winter versus summer blooming of phytoplankton in a shallow lake: effect of hypertrophic conditions, Pol. J. Ecol. 58(1): 159–168

  • [48] USEPA, 2006, Toxicological Reviews of Cyanobacterial Toxins: Anatoxin-a (External Review Draft), U.S. Environmental Protection Agency, Washington, DC, NCEA-C-1743

  • [49] Utermöhl H., 1958, Zur Vervollkommung der quantitative Phytoplanktonmethodik, Mitt. Internat. Verein. Limnol., 2: 1–38

  • [50] Van Apeldoorn M.E., Van Egmond H.P., Speijers G.J.A., Bakker G.J.I., 2007, Toxins of Cyanobacteria, Mol. Nutr. Food Res., 51: 7–60 http://dx.doi.org/10.1002/mnfr.200600185 [Crossref]

  • [51] Van Den Hoek C., Mann D.G., Jahns H.M. 1995, Algae. An introduction to phycology, Cambrige Univ. Press, Cambridge, pp. 623

  • [52] Visser P.M., Ibelings B.W., Van Der Veer B., Koedood J., Mur L.R., 1996, Artificial mixing prevents nuisance blooms of the Cyanobacterium Microcystis in Lake Nieuwe Meer, The Netherlands, Freshwat. Biol., 36: 436–450 http://dx.doi.org/10.1046/j.1365-2427.1996.00093.x [Crossref]

  • [53] Welker M., Von Dohren H., 2006, Cyanobacterial peptides — nature’s own combinatorial biosynthesis, FEMS Microbiol. Rev., 30: 530–563 http://dx.doi.org/10.1111/j.1574-6976.2006.00022.x [Crossref]

  • [54] WHO. 2008, Guidelines for Drinking-water Quality, Third Edition, Incorporating the first and second Addenda, Volume 1, Recommendations, Geneva

  • [55] Wilk-Woźniak E., 1996, Changes in the biomass and structure of phytoplankton in the Dobczyce Reservoir (soutern Poland), Acta Hydrobiol., 38: 125–131

  • [56] Wilk-Woźniak E., Mazurkiewicz-Boroń G., 2003, The autumn dominance of cyanoprokaryotes in a deep meso-eutrophic submontane reservoir, Biologia, Bratislava, 58(1): 17–24

  • [57] Wiśniewska M., Krupa D., Pawlik-Skowrońska B., Kornijów R., 2007, Development of toxic Planktothrix agardhii (Gom.) Anagn. et Kom. and potentially toxic algae in the hypertrophic Lake Syczyńskie (E. Poland), Oceanol. Hydrobiol. Stud., 34: 173–179

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Michał Solis, Barbara Pawlik-Skowrońska, and Renata Kalinowska
Oceanological and Hydrobiological Studies, 2015, Volume 44, Number 2
[3]
Justyna Kobos, Agata Błaszczyk, Natalia Hohlfeld, Anna Toruńska-Sitarz, Anna Krakowiak, Agnieszka Hebel, Katarzyna Sutryk, Magdalena Grabowska, Magdalena Toporowska, Mikołaj Kokociński, Beata Messyasz, Andrzej Rybak, Agnieszka Napiórkowska-Krzebietke, Lidia Nawrocka, Aleksandra Pełechata, Agnieszka Budzyńska, Paweł Zagajewski, and Hanna Mazur-Marzec
Oceanological and Hydrobiological Studies, 2013, Volume 42, Number 4
[4]
Barbara Pawlik-Skowrońska, Renata Kalinowska, and Tadeusz Skowroński
Harmful Algae, 2013, Volume 28, Page 118
[5]
Barbara Pawlik-Skowrońska, Magdalena Toporowska, and Jacek Rechulicz
Oceanological and Hydrobiological Studies, 2012, Volume 41, Number 4

Comments (0)

Please log in or register to comment.