Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 41, Issue 2


Sulfur in the marine environment

Anita Jasińska / Dorota Burska / Jerzy Bolałek
Published Online: 2012-04-19 | DOI: https://doi.org/10.2478/s13545-012-0019-x


Sulfur is an element commonly occurring in the environment. It is present in the atmosphere, in the hydrosphere, and in live organisms; it is one of the most important physicochemical and geological indicators. Depending on the natural conditions, sulfur compounds in the environment may play the role of electron acceptor or donor in the redox processes. These compounds influence the ion concentration and ion balance in benthic sediments. They also determine the speciation, bioavailability and toxicity of heavy metals. Comprehensive knowledge of the processes mediated by sulfur can be a valuable source of information about the past and present state of the ecosystem.

Keywords: sulfur; hydrogen sulfide; AVS; marine sulfur cycle; decomposition of organic matter

  • [1] Andreae M.O., Jaeschke W.A., 1992, Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions [in:] Sulphur cycling on the Continents: Wetlands, Terrestrial Ecosystems, and Associated Water Bodies, SCOPE 48, Ed. Howarth R W., Chichester, John Wiley & Sons, pp. 27–61 Google Scholar

  • [2] Abdollahi H., Wimpenny J., 1990, Effects of oxygen on the growth of Desulfovibrio desulfuricans, J. Gen. Microbiol., 136(6): 1025–1030, DOI: 10.1099/002 21287-136-6-1025 CrossrefGoogle Scholar

  • [3] Anderson E.F., Wilson D.J., 2000, A simple field test for acid volatile sulfide in sediments, J. Tennessee. Acad. Sci. 75(3–4): 53–56, http://www.highbeam.com/doc/1G1-78398540.html Google Scholar

  • [4] Andrews J.E., Brimblecombe P., Jickells T.D., Liss P.S., 2000, An Introduction to Environmental Chemistry, Warszawa, Scientific and Technical Press, pp. 234 (in Polish) Google Scholar

  • [5] Azad Md.A.K., Ohira S.-I., Oda M., Toda K., 2005, On-site measurements of hydrogen sufide and sulfur dioxide emissions from tidal flat sediments of Ariake Sea, Japan, Atmos. Environ., 39(33): 6077–6087, DOI:10.1016/j.atmosenv.2005.06.042 http://dx.doi.org/10.1016/j.atmosenv.2005.06.042CrossrefGoogle Scholar

  • [6] Bates T.S., Charlson R.J., Gammon R.H., 1987, Evidence for the climatic role of marine biogenic sulphur, Nature, 329: 319–321 http://dx.doi.org/10.1038/329319a0CrossrefGoogle Scholar

  • [7] Battersby N.S., 1988, Sulphate-reducting bacteria [in:] Methods on aquatic bacteriology, Ed. Austin B., Chichester, John Wiley & Sons, pp. 269–299 Google Scholar

  • [8] Berner R.A., 1984, Sedimentary pyrite formation: An update, Geochim. et Cosmochim. Acta, 48(4): 605–615, DOI: 10.1016/0016-7037(84)90089-9 http://dx.doi.org/10.1016/0016-7037(84)90089-9CrossrefGoogle Scholar

  • [9] Berner R.A., Raiswell R., 1983, Burial of organic-carbon and pyrite sulfur in sediments over phanerozoic time-a new theory, Geochim. et Cosmochim. Acta, 47(5): 855–862, DOI: 10.1016/0016-7037(83)90151-5 http://dx.doi.org/10.1016/0016-7037(83)90151-5CrossrefGoogle Scholar

  • [10] Bitton G., 2005, Wastewater microbiology, New Jersey, John Wiley and Sons, pp. 749 http://dx.doi.org/10.1002/0471717967CrossrefGoogle Scholar

  • [11] Boon A.G., Vincent A.J., 2003, Odour generation and control [in:] The handbook of water and wastewater microbiology, Eds. Mara D., Horan N.J., San Diego, Academic Press, pp. 545–557 http://dx.doi.org/10.1016/B978-012470100-7/50034-0CrossrefGoogle Scholar

  • [12] Borówka R.K., Cedro B., 2001, Skarby Ziemi: Co kryje Ziemia, Poznań, KURPISZ, pp. 239, (in Polish) Google Scholar

  • [13] Bottrell S.H., Newton R.J., 2006, Reconstruction of changes in global sulfur cycling from marine sulfate isotopes, Earth-Sci. Rev., 75(1–4): 59–83, DOI: 10.1016/j.earscirev.2005.10.004 http://dx.doi.org/10.1016/j.earscirev.2005.10.004CrossrefGoogle Scholar

  • [14] Böttcher M.E., Thamdrup B., Vennemann T.W., 2001, Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur, Geochim. et Cosmochim. Acta, 65(10): 1601–1609, DOI: 10.1016/S0016-7037(00)00628-1 http://dx.doi.org/10.1016/S0016-7037(00)00628-1CrossrefGoogle Scholar

  • [15] Brouwer H., Murphy T., 1995, Volatile sulfides and their toxicity in freshwater sediments, Envir. Toxicol. Chem., 14(2): 203–208, DOI: 10.1897/1552-8618(1995)14[203:VSATTI]2.0.CO;2 http://dx.doi.org/10.1002/etc.5620140204CrossrefGoogle Scholar

  • [16] Brüchert V., 1998, Early diagenesis of sulfur in estuarine sediments: The role of sedimentary humic and fulvic acids, Geochim. et Cosmochim. Acta, 62(9): 1567–1586, DOI: 10.1016/S0016-7037(98)00089-1 http://dx.doi.org/10.1016/S0016-7037(98)00089-1CrossrefGoogle Scholar

  • [17] Brüchert V., Pratt L.M., 1996, Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA, Geochim. et Cosmochim. Acta, 60(13): 2325–2332, DOI: 10.1016/0016-7037(96)00087-7 http://dx.doi.org/10.1016/0016-7037(96)00087-7CrossrefGoogle Scholar

  • [18] Brüchert V., Jørgensen B.B., Neumann K., Riechmann D., Schlösser M., Schulz H., 2003, Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone, Geochim. et Cosmochim. Acta, 67(23): 4505–4518, DOI: 10.1016/S0016-7037(03)00275-8 http://dx.doi.org/10.1016/S0016-7037(03)00275-8CrossrefGoogle Scholar

  • [19] Butler I.B., Böttcher M.E., Rickard D., Oldroyd A., 2004, Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records, Earth Planet. Sci. Lett., 228(3–4): 495–509, DOI: 10.1016/j.epsl.2004.10.005 http://dx.doi.org/10.1016/j.epsl.2004.10.005CrossrefGoogle Scholar

  • [20] Canfield D.E., Jørgensen B.B., Fossing H., Glud R., Gundersen N.B. et al., 1993, Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol., 113(1–2): 27–40 http://dx.doi.org/10.1016/0025-3227(93)90147-NCrossrefGoogle Scholar

  • [21] De Graaf W., Sinninghe Damsté J. S., De Leeuw J.W., 1992, Laboratory simulation of natural sulphurization: I. Formation of monomeric and oligomeric isoprenoid polysulphides by low-termperature reactions of inorganic polysulphides with phytol and phytadienes, Geochim. et Cosmochim. Acta, 56(12): 4321–4328, DOI: 10.1016/0016-7037(92)90275-N http://dx.doi.org/10.1016/0016-7037(92)90275-NCrossrefGoogle Scholar

  • [22] Deming J.W., Baross J.A., 1993, The early diagenesis of organic matter: bacterial activity [in:] Organic geochemistry: Principles and Applications, Eds. M.H. Engel, S.A. Macko, New York, Plenum Press, pp. 119–144 http://dx.doi.org/10.1007/978-1-4615-2890-6_5CrossrefGoogle Scholar

  • [23] Derda M., 1999, Sulfur isotopes in nature. Determination of sulfur isotope ratios in coal and petroleum by gas combustion, INCT Reports Series B, 6(99), Warszawa, Institute of Nuclear Chemistry and Technology, pp. 20 (in Polish) Google Scholar

  • [24] Di Toro D.M., Mahony J.D., Hansen D.J., Scott K.J., Hicks M.B. et al., 1990, Toxicity of cadmium in sediments: the role of acid-volatile sulfide, Environ. Toxicol. Chem., 9(12): 1487–1502, DOI: 10.1897/1552-8618(1990)9[1487:TOCIST]2.0.CO;2 http://dx.doi.org/10.1002/etc.5620091208CrossrefGoogle Scholar

  • [25] Donahue M.A., Werne J.P., Meile Ch., Lyons T., 2008, Modeling isotope fractionation and differential diffusion during sulfate reduction in sediments of the Cariaco Basin, Geochim. et Cosmochim. Acta, 72(9): 2287–2297, DOI: 10.1016/j.gca.2008.02.020 http://dx.doi.org/10.1016/j.gca.2008.02.020CrossrefGoogle Scholar

  • [26] EPA, 1994, Chemicals in the environment: OPPT Chemical Fact Sheets: Carbonyl sulfide (CAS 463-58-1), http://www.epa.gov/chemfact/ Google Scholar

  • [27] Falkowska L., Korzeniewski K., 1995, Chemia atmosfery, Gdańsk, The University of Gdańsk Press, pp. 193 (in Polish) Google Scholar

  • [28] Ferek R.J., Andreae M.O., 1984, Photochemical production of carbonyl sulphide in marine surface waters, Nature, 307: 148–150, DOI: 10.1038/307148a0 http://dx.doi.org/10.1038/307148a0CrossrefGoogle Scholar

  • [29] Fossing H., Gallardo V.A., Jørgensen B.B., Hüttel M., Nielsen L.P. et al., 1995, Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature, 374: 713–715, DOI: 10.1038/374713a0 http://dx.doi.org/10.1038/374713a0CrossrefGoogle Scholar

  • [30] Froelich P.N., Klinkhammer G.P., Bender M.L., Luedtke N.A., Heath G.R., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. et Cosmochim. Acta, 43(7): 1075–1090, DOI: 10.1016/0016-7037(79)90095-4 http://dx.doi.org/10.1016/0016-7037(79)90095-4CrossrefGoogle Scholar

  • [31] Gagnon C., Mucci A., Pelletier E., 1996, Vertical distribution of dissolved sulphur species in coastal marine sediments, Mar. Chem., 52(3–4): 195–209, DOI: 10.1016/0304-4203(95)00099-2 http://dx.doi.org/10.1016/0304-4203(95)00099-2CrossrefGoogle Scholar

  • [32] Gao Y., Schofield O.M.E., Leustek T., 2000, Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase, J. Plant Physiol., 123: 1087–1096 http://dx.doi.org/10.1104/pp.123.3.1087CrossrefGoogle Scholar

  • [33] George J., Purushothaman C.S., Shouche Y.S., 2008, Isolation and characterization of sulphate-reducting bacteria Desulfovibrio vulgaris from Vajreshwari thermal springs in Maharashtra, India, World J. Microb. Biot., 24(5): 681–685, DOI: 10.1007/s11274-007-9524-2 http://dx.doi.org/10.1007/s11274-007-9524-2CrossrefGoogle Scholar

  • [34] Grasby S.E., Allen C.C., Longazo T.G., Lisle J.T., Griffin D.W., Beauchamp B., 2003, Biogeochemical sulphur cycle in an extreme environment — life beneath a high arctic glacier, Nunavut, Canada, J. Geochem. Explor., 78–79: 71–74, DOI: 10.1016/S0375-6742(03)00026-8 http://dx.doi.org/10.1016/S0375-6742(03)00026-8CrossrefGoogle Scholar

  • [35] Holser W.T., Mackenzie F.T., Maynard J.B., Schidlowski M., 1988, Geochemical cycles of carbon and sulfur [in:] Chemical cycles in the evolution of the earth, Ed. Gregor C.B., New York, Wiley-Interscience, pp. 105–173 Google Scholar

  • [36] Iverson R.L., Nearhoof F.L., Andreae M.O., 1989, Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters, Limnol. Oceanogr., 34: 53–67 http://dx.doi.org/10.4319/lo.1989.34.1.0053CrossrefGoogle Scholar

  • [37] Janas U., 1998, Wpływ niedoboru tlenu i obecności siarkowodoru na makrozoobentos Zatoki Gdańskiej, PhD thesis, University of Gdańsk, Gdynia, pp. 155 (in Polish) Google Scholar

  • [38] Jørgensen B.B., 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr., 22(5): 814–832 http://dx.doi.org/10.4319/lo.1977.22.5.0814CrossrefGoogle Scholar

  • [39] Jørgensen B.B., 1982, Mineralization of organic matter in the sea bed — the role of sulphate reduction, Nature, 296: 643–645, DOI: 10.1038/296643a0 http://dx.doi.org/10.1038/296643a0CrossrefGoogle Scholar

  • [40] Kamyshny A., Goifman A., Rizkov D., Lev O., 2003, Formation of carbonyl sulfide by the reaction of carbon monoxide and inorganic polysulfides, Environ. Sci. Techol., 37(9): 1865–1872, DOI: 10.1021/es0201911 http://dx.doi.org/10.1021/es0201911CrossrefGoogle Scholar

  • [41] Keith S.M., Herbert R.A., Harfoot C.G., 1982, Isolation of new types of sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments, J. Appl. Microbiol., 53: 29–33, DOI: 10.1111/j.1365-2672.1982.tb04731.x http://dx.doi.org/10.1111/j.1365-2672.1982.tb04731.xCrossrefGoogle Scholar

  • [42] Kettle, A.J., Andreae M.O., Amouroux D., Andreae T.W., Bates T.S. et. al., 1999, A global data base of sea surface dimethyl sulfide (DMS) measurements and a simple model to predict sea surface DMS as a function of latitude, longitude, and month, Global Biogeochem. Cy. 13(2): 399–444, DOI: 10.1029/1999GB900004 http://dx.doi.org/10.1029/1999GB900004CrossrefGoogle Scholar

  • [43] Kholodov V.N., 2002, The role of H 2S — contaminated basins in sedimentary ore formation, Limnology and Mineral Resources, 37(5): 393–411, DOI: 10.1023/A:1020251314915 http://dx.doi.org/10.1023/A:1020251314915CrossrefGoogle Scholar

  • [44] Kohnen M.E.L., Jaap S., Damsté S.S., Kock-Van Dalen A.C., De Leeuw J.W., 1991, Di- or polysulphide — bound biomarkers in sulphur — rich geomacromolecules as revealed by selective chemolysis, Geochim. et Cosmochim. Acta, 55(5): 1375–1394, DOI: 10.1016/0016-7037(91)90315-V http://dx.doi.org/10.1016/0016-7037(91)90315-VCrossrefGoogle Scholar

  • [45] Korzeniewski K., 1995, Podstawy oceanografii chemicznej, Gdańsk, University of Gdańsk Press, pp. 200 (in Polish) Google Scholar

  • [46] Kuenen J.G., 1975, Colourless sulfur bacteria and their role in the sulfur cycle, Plant Soil, 43(1–3): 49–76, DOI: 10.1007/BF01928476 http://dx.doi.org/10.1007/BF01928476CrossrefGoogle Scholar

  • [47] Levine, J. S., 1989, Photochemistry of biogenic gases [in:] Global Ecology: Towards a Science of the Biosphere, Eds. Rambler M.B., Margulis L., Fester L.R., London, Academic Press, pp. 51–74 Google Scholar

  • [48] Lin S., Huang K.-M., Chen S.-K., 2000, Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments, Cont. Shelf Res., 20(4–5): 619–635, DOI:10.1016/S0278-4343(99)00088-6 http://dx.doi.org/10.1016/S0278-4343(99)00088-6CrossrefGoogle Scholar

  • [49] Lin S., Huang K.-M., Chen S.-K., 2002, Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment, Deep Sea Res. Part I, 49(10): 1837–1852, DOI: 10.1016/S0967-0637(02)00092-4 http://dx.doi.org/10.1016/S0967-0637(02)00092-4CrossrefGoogle Scholar

  • [50] Lojen S., Ogrinc N., Dolenec T., Vokal B., Szran J. et al., 2004, Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia), Sci. Tot. Environ., 327(1–3): 265–284, DOI: 10.1016/j.scitotenv.2004.01.011 http://dx.doi.org/10.1016/j.scitotenv.2004.01.011CrossrefGoogle Scholar

  • [51] Lyons T.W., Werne J.P., Hollander D.J., Murray R.W., 2003, Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela, Chem. Geol., 195(1–4): 131–157, DOI:10.1016/S0009-2541(02)00392-3 http://dx.doi.org/10.1016/S0009-2541(02)00392-3CrossrefGoogle Scholar

  • [52] Malin G., 2006, New pieces for the marine sulfur cycle jigsaw, Science, 314(5799): 607–608, DOI: 10.1126/science.1133279 http://dx.doi.org/10.1126/science.1133279CrossrefGoogle Scholar

  • [53] McKay J.L., Longstaffe F.J., 2003, Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin, Sediment. Geol. 157(3–4): 175–195, DOI: 10.1016/S0037-0738(02)00233-6 http://dx.doi.org/10.1016/S0037-0738(02)00233-6CrossrefGoogle Scholar

  • [54] Migdisov A.A., Ronov A.B., Grinenko V.A., 1983, The sulphur cycle in the lithosphere: Part 1. Reservois [in:] The global geochemical sulphur cycle, Eds. Ivanow M.V., Freney J.R., New York, Wiley, pp. 25–95 Google Scholar

  • [55] Mudryk Z.J., Podgórska B., Ameryk A., Bola’ek J., 2000, The occurrence and activity of sulphate-reducing bacteria in the bottom sediments of the Gulf of Gdańsk, Oceanologia, 42(1): 105–117 Google Scholar

  • [56] Neumann T., Rausch N., Leipe T., Dellwig O., Berner Z., Böttcher M.E., 2005, Intense pyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea, Geochim. et Cosmochim. Acta, 69(14): 3619–3630, DOI: 10.1016/j.gca.2005.02.034 http://dx.doi.org/10.1016/j.gca.2005.02.034CrossrefGoogle Scholar

  • [57] Norris, K.B., 2003. Dimethylsulfide emission: Climate control by marine algae?, Aquatic Sciences and Fisheries Abstracts, http://www.csa.com/discoveryguides/dimethyl/overview.php Google Scholar

  • [58] Nyström M., Ruohomäki K., Kaipia L., 1996, Humic acid as a fouling agent in filtration, Desalination, 106(1–3): 79–87, DOI: 10.1016/S0011-9164(96)00095-1 CrossrefGoogle Scholar

  • [59] Ober J.A., 2010, Sulfur(Advance Release) [in:] Minerals Yearbook 2008: Vol.1 Metals & Minerals, US Geological Survey, 74: 1–17, http://minerals.usgs.gov/ Google Scholar

  • [60] Parkes R. J., Gibson G.R., Mueller-Harvey I., Buckingham W. J., Herbert R.A., 1989, Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction, J. Gen. Microbiol., 135: 175–187, DOI: 10.1099/00221287-135-1-175 CrossrefGoogle Scholar

  • [61] Pempkowiak J., 1997, Zarys geochemii morskiej, Gdańsk, University of Gdańsk Press, pp. 171 (in Polish) Google Scholar

  • [62] Pham M., Müller J.-F., Brasseur G.P., Granier C., Mégie G., 1996, A 3D model study of the global sulphur cycle: contributions of anthropogenic and biogenic sources, Atmos. Environ. 30(10–11): 1815–1822, DOI: 10.1016/1352-2310(95)00390-8 http://dx.doi.org/10.1016/1352-2310(95)00390-8CrossrefGoogle Scholar

  • [63] Pronk J.T., Liem K., Bos P., Kuenen J.G., 1991, Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans, Appl. Environ. Microbiol. 57(7): 2063–2068 Google Scholar

  • [64] Rickard, D., 1997, Kinetics of pyrite formation by the H 2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation, Geochim. et Cosmochim. Acta, 61(1): 115–134, DOI:10.1016/S00167037(96) 00321-3 http://dx.doi.org/10.1016/S0016-7037(96)00321-3CrossrefGoogle Scholar

  • [65] Rickard D., Morse J.W., 2005, Acid volatile sulfide (AVS), Marine Chemistry 97(3–4): 141–197, DOI: 10.1016/j.marchem.2005.08.004 http://dx.doi.org/10.1016/j.marchem.2005.08.004CrossrefGoogle Scholar

  • [66] Schenau S.J., Passier H.F., Reichart G.J., De Lange G.J., 2002, Sedimentary pyrite formation in the Arabian Sea, Mar. Geol., 185(3–4): 393–402 http://dx.doi.org/10.1016/S0025-3227(02)00183-4CrossrefGoogle Scholar

  • [67] Schippers A., Jørgensen B.B., 2002, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochim. et Cosmochim. Acta, 66(1): 85–92, DOI: 10.1016/S0016-7037(01)00745-1 http://dx.doi.org/10.1016/S0016-7037(01)00745-1CrossrefGoogle Scholar

  • [68] Schlegel H.G., 2003, Mikrobiologia ogólna, Warszawa, Polish Scientific Publishers PWN, pp. 735 (in Polish) Google Scholar

  • [69] SCOPE, 1993, Effects of increased ultraviolet radiation on global ecosystems: proceedings of a workshop arranged by the Scientific Committee on Problems of the Environment (SCOPE) with the financial support of the CEC, UNEP, US EPA, the Barbara Gauntlett Foundation, and the US NSF: a research implementation plan addressing the impacts of increased UV-B radiation due to stratospheric ozone depletion on global ecosystems, Tramariglio, (Sassari) Sardinia, Paris, SCOPE, pp. 47 Google Scholar

  • [70] Sievert S.M., Kiene R.P., Schulz-Vogt H.N., 2007, The sulfur cycle, Oceanography, 20: 117–123 http://dx.doi.org/10.5670/oceanog.2007.55CrossrefGoogle Scholar

  • [71] Suits N.S., Arthur M.A., 2000, Sulfur diagenesis and partitioning in Holocene Peru shelf and upper slope sediments, Chem. Geol., 163: 219–234, DOI: 10.1016/S0009-2541(99)00114-X http://dx.doi.org/10.1016/S0009-2541(99)00114-XCrossrefGoogle Scholar

  • [72] Šukytė V.J., Rinkevičienė E., Zelionkaitė V., 2002, The chemistry of sulfur in anoxic zones of the Baltic Sea, Environmental Research, Engineering and Management, 3(21): 55–60 Google Scholar

  • [73] Thamdrup B., Fossing H., Jørgensen B.B., 1994, Manganese, iron and sulfur cycling in a coastal marine sediment (Aarhus Bay, Denmark), Geochim. et Cosmochim. Acta, 58(23): 5115–5129, DOI: 10.1016/0016-7037(94)90298-4 http://dx.doi.org/10.1016/0016-7037(94)90298-4CrossrefGoogle Scholar

  • [74] Uher G., 2006, Distribution and air — sea exchange of reduced sulphur gases in European coastal waters, Estuarine Coastal Shelf Sci., 70(3): 338–360, DOI: 10.1016/j.ecss.2006.05.050 http://dx.doi.org/10.1016/j.ecss.2006.05.050CrossrefGoogle Scholar

  • [75] Uher G., Andreae M.O., 1997, Photochemical production of carbonyl sulfide in North Sea water: A process study, Limnol. Oceanogr., 42(3): 432–442 http://dx.doi.org/10.4319/lo.1997.42.3.0432CrossrefGoogle Scholar

  • [76] Ulshöfer V.S., Andreae M.O., 1997, Carbonyl sulfide (COS) in the surface ocean and the atmospheric COS budget, Aquat. Geochem., 3(4): 283–303, DOI: 10.1023/A:1009668400667 http://dx.doi.org/10.1023/A:1009668400667CrossrefGoogle Scholar

  • [77] Walker J.C., 1986, Global geochemical cycles of carbon, sulfur and oxygen, Mar. Geol., 70: 159–174, DOI: 10.1016/0025-3227(86)90093-9 http://dx.doi.org/10.1016/0025-3227(86)90093-9CrossrefGoogle Scholar

  • [78] Weiner J., 2003, Życie i ewolucja biosfery, Warszawa, Polish Scientific Publishers PWN, pp. 609 (in Polish) Google Scholar

  • [79] Wijsman J.W.M., Middelburg J.J., Herman P.M.J., Böttcher M.E., Heip C.H.R., 2001, Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Mar. Chem., 74(4): 261–278, DOI: 10.1016/S0304-4203(01)00019-6 http://dx.doi.org/10.1016/S0304-4203(01)00019-6CrossrefGoogle Scholar

  • [80] Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996, The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. et Cosmochim. Acta, 60(20): 3897–3912, DOI: 10.1016/0016-7037(96)00209-8 http://dx.doi.org/10.1016/0016-7037(96)00209-8CrossrefGoogle Scholar

  • [81] Vismann B., 1996, Sulfide species and total sulfide toxicity in the shrimp Crangon crangon, J. Exp. Mar. Biol. Ecol., 204(1–2): 141–154, DOI: 10.1016/0022-0981(96)02577-4 http://dx.doi.org/10.1016/0022-0981(96)02577-4CrossrefGoogle Scholar

  • [82] Zago C., Giblin A.E., 1994, Analysis of acid volatile sulfide and metals to predict the toxicity of Boston Harbor sediments, The Biological Bulletin, 187: 290–291 Google Scholar

About the article

Published Online: 2012-04-19

Published in Print: 2012-06-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 41, Issue 2, Pages 72–82, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-012-0019-x.

Export Citation

© 2012 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Poulami Jha, Shamayita Banerjee, Prajamitra Bhuyan, Mathummal Sudarshan, and Anjana Dewanji
Environmental Geochemistry and Health, 2019
Samantha Seng, A. Lorena Picone, Yanina B. Bava, Luciana C. Juncal, Myriam Moreau, Raluca Ciuraru, Christian George, Rosana M. Romano, Sophie Sobanska, and Yeny A. Tobon
Physical Chemistry Chemical Physics, 2018
Justyna Rogowska, Joanna Sychowska, Monika Cieszynska-Semenowicz, and Lidia Wolska
Environmental Science and Pollution Research, 2016, Volume 23, Number 24, Page 24871
Chon-Lin Lee and Peter Brimblecombe
Earth-Science Reviews, 2016, Volume 160, Page 1

Comments (0)

Please log in or register to comment.
Log in