Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 42, Issue 2

Issues

Gas chromatographic-mass spectrometric investigation of the chemical composition of the aquatic plant Wolffia arrhiza (Lemnaceae)

Urszula Kotowska
  • Department of Environmental Chemistry, University of Białystok, Institute of Chemistry, Hurtowa 1, 15-399, Białystok, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alicja Piotrowska
  • Department of Plant Biochemistry and Toxicology, University of Białystok, Institute of Biology, Swierkowa 20B, 15-950, Białystok, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anastasija Isidorova
  • Department of Environmental Chemistry, University of Białystok, Institute of Chemistry, Hurtowa 1, 15-399, Białystok, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Bajguz
  • Department of Plant Biochemistry and Toxicology, University of Białystok, Institute of Biology, Swierkowa 20B, 15-950, Białystok, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valery Isidorov
  • Department of Environmental Chemistry, University of Białystok, Institute of Chemistry, Hurtowa 1, 15-399, Białystok, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-14 | DOI: https://doi.org/10.2478/s13545-013-0072-0

Abstract

The ether and methanol extracts of Wolffia arrhiza (Lemnaceae) were analyzed using high resolution capillary gas chromatography coupled with mass spectrometry (GC-MS). The ether extract contains 32 compounds, mostly lipids and sterols, among which β-sitosterol is most prevalent. This is the first evidence of β-sitosterol detection in W. arrhiza. The most representative group of polar compounds of the methanol fraction is formed by 18 free amino acids. In addition, in the methanol extract there are a number of other nitrogen containing compounds: nucleobase and nucleosides. The third significant group in the total ion current in the methanol extract is formed by glycerol and glycerides. At the same time, the content of free sugar is very low.

Keywords: Wolffia arrhiza; chemical composition; polyunsaturated fatty acids; amino acids; sterols; carbohydrates

  • [1] Appenroth, K.-J., & Nickel, G. (2010). Induction of turion formation in Spirodela polyrhiza under close-to-nature conditions: the environmental signals that induce the developmental process in nature. Physiologia Plantarum, 138, 312–320. http://dx.doi.org/10.1111/j.1399-3054.2009.01319.xWeb of ScienceCrossrefGoogle Scholar

  • [2] Bajguz, A., & Asami, T. (2005). Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry, 66, 1787–1796. http://dx.doi.org/10.1016/j.phytochem.2005.06.005CrossrefGoogle Scholar

  • [3] Bog, M., Baumbach, H., Schween, U., Hellwig, F., Landolt, E., & Appenroth, K.-J. (2010). Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta, 232, 609–619. http://dx.doi.org/10.1007/s00425-010-1201-2Web of ScienceCrossrefGoogle Scholar

  • [4] Flores, S., & Smart, C.C. (2000). Abscisic acid-induced changes in inositol metabolism in Spirodela polyrrhiza. Planta, 211, 823–832. http://dx.doi.org/10.1007/s004250000348CrossrefGoogle Scholar

  • [5] Frick, H. (1994). Heterotrophy in the Lemnaceae. Journal of Plant Physiology, 144, 189–193. http://dx.doi.org/10.1016/S0176-1617(11)80542-0CrossrefGoogle Scholar

  • [6] Gitz, D.C., Liu-Gitz, McClure, J.W., & Huerta A.J. (2004). Effects of a PAL inhibitor on phenolic accumulation and UV-B tolerance in Spirodela intermedia (Koch.). Journal of Experimental Botany, 55, 919–927. http://dx.doi.org/10.1093/jxb/erh092CrossrefGoogle Scholar

  • [7] Godziemba-Czyż, J. (1970). Characteristic of vegetative and resting forms of Wolffia arrhiza (L.) Wimm. II. Anatomy, physical and physiological properties. Acta Societatis Botanicorum Poloniae, 39, 421–443. Google Scholar

  • [8] Gogus, U., & Smith Ch. (2010). n-3 Omega fatty acids: a review of current knowledge. International Journal of Food Science and Technology, 45, 417–436. http://dx.doi.org/10.1111/j.1365-2621.2009.02151.xCrossrefGoogle Scholar

  • [9] Hutner, S.H. (1953). Comparative physiology of heterotrophic growth in plants. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Ames, p. 417–446. Google Scholar

  • [10] Isidorov, V.A., Isidorova, A.G., Sczczepaniak, L., & Czyzewska, U. (2009). Gas chromatographic-mass spectrometric investigation of the chemical composition of beebread. Food Chemistry, 115, 1056–1063. http://dx.doi.org/10.1016/j.foodchem.2008.12.025CrossrefWeb of ScienceGoogle Scholar

  • [11] Isidorov, V.A., & Szczepaniak, L. (2009). Gas chromatographic retention indices of biologically and environmentally important organic compounds on capillary columns with low-polar stationary phases. Journal of Chromatography A, 1216, 8998–9007. http://dx.doi.org/10.1016/j.chroma.2009.10.079CrossrefWeb of ScienceGoogle Scholar

  • [12] Les, D.H., Crawford, D.J., Landolt, E., Gabel, J.D., & Kimball, R.T. (2002). Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany, 27, 221–240. Google Scholar

  • [13] Mical, A.H., & Krotke, A. (1999). Wolffia arrhiza (L.) — small but strong. Acta Hydrobiologica, 41, 165–170. Google Scholar

  • [14] Molnár-Perl, I. (1999). Simultaneous quantitation of acids and sugars by chromatography: Gas or high-performance liquid chromatography? Journal of Chromatography A, 845, 181–195. http://dx.doi.org/10.1016/S0021-9673(99)00296-4CrossrefGoogle Scholar

  • [15] Mosblech, A., Feussner, I., & Heilmann, I. (2009). Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry, 47, 511–517. http://dx.doi.org/10.1016/j.plaphy.2008.12.011Web of ScienceCrossrefGoogle Scholar

  • [16] NIST Chemistry WebBook, National Institute of Standards and Technology, Gaithersburg, MD, http://webbook.nist.gov/chemistry. Google Scholar

  • [17] Piotrowska, A., Bajguz, A., Czerpak, R., & Kot, K. (2010)a. Changes in the growth, chemical composition and antioxidant activity in aquatic plant Wolffia arrhiza (L.) Wimm. (Lemnaceae) exposed to jasmonic acid. Journal of Plant Growth Regulation, 29, 53–62. http://dx.doi.org/10.1007/s00344-009-9113-8Web of ScienceCrossrefGoogle Scholar

  • [18] Piotrowska, A., Bajguz, A., Godlewska-Żyłkiewicz, B., Czerpak, R., & Zambrzycka, E. (2010)b. Changes in growth, biochemical components, and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Archives of Environmental Contamination and Toxicology, 58, 594–604. http://dx.doi.org/10.1007/s00244-009-9408-6Web of ScienceCrossrefGoogle Scholar

  • [19] Roberts, R.M., & Loewus, F. (1968). Inositol metabolism in plants. VI. Conversion of myo-inositol in phytic acid in Wolffiella floridiana. Plant Physiology, 43, 1710–1715. http://dx.doi.org/10.1104/pp.43.10.1710CrossrefGoogle Scholar

  • [20] Stasolla, C., Katahira, K., Thorpe, T.A., & Ashihara, H. (2003). Purine and pyrimidine nucleotide metabolism in higher plants. Journal of Plant Physiology, 160, 1271–1295. http://dx.doi.org/10.1078/0176-1617-01169CrossrefGoogle Scholar

  • [21] Tiefenbacher, F.K. (1993). Starch-based foamed materials — use and degradation properties. Journal of Macromolecular Science — Part A: Pure and Applied Chemistry, 30, 727–731. http://dx.doi.org/10.1080/10601329308021258CrossrefGoogle Scholar

  • [22] Wang, G., Hao, Z., Anken, R.H., Lu, J., & Liu, Y. (2010). Effects of UV-B radiation on photosynthesis activity of Wolffia arrhiza as probed by chlorophyll fluorescence transients. Advances in Space Research, 45, 839–845. http://dx.doi.org/10.1016/j.asr.2009.12.004Web of ScienceCrossrefGoogle Scholar

  • [23] Ye, J.C., Chang, W.C., Hsieh, D.J.Y., & Hsiao, M.W. (2010). Extraction and analysis of β-sitosterol in herbal medicines. Journal of Medicinal Plants Research, 4, 522–527. Google Scholar

About the article

Published Online: 2013-06-14

Published in Print: 2013-06-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 2, Pages 181–187, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0072-0.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Supannee Tipnee, Aranya Jutiviboonsuk, and Paveena Wongtrakul
Cosmetics, 2017, Volume 4, Number 4, Page 53

Comments (0)

Please log in or register to comment.
Log in