Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 42, Issue 3

Issues

Use of siliceous algae as biological monitors of heavy metal pollution in three lakes in a mining city, southeast China

Xu Chen / Xin Mao / Yanmin Cao
  • State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
  • Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiangdong Yang
  • State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/s13545-013-0079-6

Abstract

In order to assess the ecological status of three lakes in a historical mining city (SE China), water metal concentrations and surface sedimentary diatoms and chrysophyte cysts were analyzed in 20 sampling sites. The significant correlations between the algal indices and the cumulative criterion unit (CCU) scores confirmed the importance of heavy metals in shaping algae communities. In the metal-polluted sites, diatom assemblages were dominated by metal-tolerant species, such as Nitzschia palea and Nitzschia perminuta. In the unpolluted samples, diatom assemblages were characterized by Cyclostephanos dubius, Discostella pseudostelligera and Aulacoseira species (mainly A. alpigena, A. granulata and A. ambigua). These dominant taxa in the unpolluted samples might be sensitive to metal contamination but tolerant of eutrophication. In addition, nonspherical cysts were much more abundant in the polluted sites, indicating that their presence should be indicative of metal contamination in this region. This study provides some clues for future metal pollution assessment through the use of siliceous algae in metal polluted lakes.

Keywords: diatom; chrysophyte cyst; heavy metal pollution; cumulative criterion unit; Daye City

  • [1] Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H., Carvalho, L. & Juggins, S. (2001). Diatoms. In J.P. Smol, H.J.B. Birks, W.M. Last, R.S. Bradley & K. Alverson (Eds.), Tracking Environmental Change Using Lake Sediments, vol 3. Terrestrial, Algal, and Siliceous Indicators (pp. 155–202). Dordrecht: Kluwer Academic Publishers. Google Scholar

  • [2] Blanck, H., Wängberg, S.A. & Molander, S. (1988). Pollution-induced community tolerance — a new ecotoxicological tool. In: J.J. Cairns & J.R. Pratt (Eds.) Functional testing of aquatic biota for estimating hazards of chemicals (pp. 219–330). Philadelphia: ASTM. http://dx.doi.org/10.1520/STP26265SGoogle Scholar

  • [3] Cattaneo, A., Couillard, Y. & Wunsam, S. (2008). Sedimentary diatoms along a temporal and spatial gradient of metal contamination. J. Paleolimn., 40(1), 115–127. DOI: 10.1007/s10933-007-9159-1. http://dx.doi.org/10.1007/s10933-007-9159-1CrossrefGoogle Scholar

  • [4] Cattaneo, A., Couillard, Y., Wunsam, S. & Courcelles, M. (2004). Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Quebec, Canada). J. Paleolimn., 32(2), 163–175. DOI: 10.1023/B:JOPL.0000029430.78278.a5. http://dx.doi.org/10.1023/B:JOPL.0000029430.78278.a5CrossrefGoogle Scholar

  • [5] Chen, X., Yang, X.D., Dong, X.H. & Liu, E.F. (2012). Influence of environmental and spatial factors on the distribution of surface sediment diatoms in Chaohu Lake, southeast China. Acta Bot. Croat., 71(2), 299–310. DOI: 10.2478/v10184-011-0070-5. Web of ScienceCrossrefGoogle Scholar

  • [6] Chen, X., Yang, X.D., Dong, X.H. & Liu, Q. (2011) Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China). Hydrobiologia, 661(1), 223–234. DOI: 10.1007/s10750-010-0526-y. http://dx.doi.org/10.1007/s10750-010-0526-yWeb of ScienceCrossrefGoogle Scholar

  • [7] Clarke, K. & Warwick, R. (2001). Change in marine communities: an approach to statistical analysis and interpretation (2nd ed.). Plymouth, UK: Primer-E Ltd. Google Scholar

  • [8] Clements, W.H., Carlisle, D.M., Lazorchak, J.M. & Johnson, P.C. (2000). Heavy metals structure benthic communities in Colorado mountain streams. Ecol. Appl., 10(2), 626–638. DOI: 10.2307/2641120. http://dx.doi.org/10.1890/1051-0761(2000)010[0626:HMSBCI]2.0.CO;2CrossrefGoogle Scholar

  • [9] Dong, X.H., Anderson, N.J., Yang, X.D., Chen, X. & Shen, J. (2012). Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration. Glob. Change Biol., 18(7), 2205–2217. DOI: 10.1111/j.1365-2486.2012.02697.x. http://dx.doi.org/10.1111/j.1365-2486.2012.02697.xCrossrefWeb of ScienceGoogle Scholar

  • [10] Dong, X.H., Bennion, H., Battarbee, R., Yang, X.D., Yang, H.D. & Liu, E.F. (2008). Tracking eutrophication in Taihu Lake using the diatom record: potential and problems. J. Paleolimn., 40(1), 413–429. DOI: 10.1007/s10933-007-9170-6. http://dx.doi.org/10.1007/s10933-007-9170-6CrossrefGoogle Scholar

  • [11] Duong, T.T., Morin, S., Coste, M., Herlory, O., Feurtet-Mazel, A. & Boudou, A. (2010). Experimental toxicity and bioaccumulation of cadmium in freshwater periphytic diatoms in relation with biofilm maturity. Sci. Total Environ., 408(3), 552–562. DOI: 10.1016/j.scitotenv.2009.10.015. http://dx.doi.org/10.1016/j.scitotenv.2009.10.015CrossrefWeb of ScienceGoogle Scholar

  • [12] EPA (U.S. Environmental Protection Agency) (1986). Quality criteria for water (EPA 440/5-86-001). Washington: U.S. Environmental Protection Agency. Google Scholar

  • [13] Falasco, E., Bona, F., Badino, G., Hoffmann, L. & Ector, L. (2009). Diatom teratological forms and environmental alterations: a review. Hydrobiologia, 623(1), 1–35. DOI: 10.1007/s10750-008-9687-3. http://dx.doi.org/10.1007/s10750-008-9687-3Web of ScienceCrossrefGoogle Scholar

  • [14] Fourtanier, E. & Kociolek, J. P. (2011). Catalogue of diatom names. California Academy of Science. (online) http://researcharchive.calacademy.org/research/diatoms/names/index.asp. Google Scholar

  • [15] Gold, C., Feurtet-Mazel, A., Coste, M. & Boudou, A. (2002). Field transfer of periphytic diatom communities to assess short-term structural effects of metals (Cd, Zn) in rivers. Water Res., 36(14), 3654–3664. DOI: 10.1016/s0043-1354(02)00051-9. http://dx.doi.org/10.1016/S0043-1354(02)00051-9CrossrefGoogle Scholar

  • [16] Guasch, H., Leira, M., Montuelle, B., Geiszinger, A., Roulier, J., Tornés, E. & Serra, A. (2009) Use of multivariate analyses to investigate the contribution of metal pollution to diatom species composition: search for the most appropriate cases and explanatory variables. Hydrobiologia, 627(1), 143–158. DOI: 10.1007/s10750-009-9721-0 http://dx.doi.org/10.1007/s10750-009-9721-0Web of ScienceCrossrefGoogle Scholar

  • [17] Hirst, H., Jüttner, I. & Ormerod, S.J. (2002). Comparing the responses of diatoms and macro-invertebrates to metals in upland streams of Wales and Cornwall. Freshw. Biol., 47(9), 1752–1765. DOI: 10.1046/j.1365-2427.2002.00904.x. http://dx.doi.org/10.1046/j.1365-2427.2002.00904.xCrossrefGoogle Scholar

  • [18] Krammer, K. & Lange-Bertalot, H. (1986) Bacillariophyceae 1. Teil: Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2/1. Jena, Germany: Gustav Fischer Verlag. Google Scholar

  • [19] Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2/2. Jena, Germany: Gustav Fischer Verlag. Google Scholar

  • [20] Krammer, K. & Lange-Bertalot, H. (1991a). Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2/3. Jena, Germany: Gustav Fischer Verlag. Google Scholar

  • [21] Krammer, K. & Lange-Bertalot, H. (1991b). Bacillariophyceae 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolate) und Gomphonema. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 2/4. Jena, Germany: Gustav Fischer Verlag. Google Scholar

  • [22] Lewis, M.A. (1995). Use of freshwater plants for phytotoxicity testing: A review. Environ. Pollut., 87(3), 319–336. DOI: 10.1016/0269-7491(94)p4164-j. http://dx.doi.org/10.1016/0269-7491(94)P4164-JCrossrefGoogle Scholar

  • [23] Liu, E., Shen, J., Yang, X. & Zhang, E. (2012). Spatial distribution and human contamination quantification of trace metals and phosphorus in the sediments of Chaohu Lake, a eutrophic shallow lake, China. Environ. Monit. Assess., 184(4), 2105–2118. DOI: 10.1007/s10661-011-2103-x. http://dx.doi.org/10.1007/s10661-011-2103-xCrossrefWeb of ScienceGoogle Scholar

  • [24] Morin, S., Cordonier, A., Lavoie, I., Arini, A., Blanco, S., Duong, T., Tornés, E., Bonet, B., Corcoll, N., Faggiano, L., Laviale, M., Pérès, F., Becares, E., Coste, M., Feurtet-Mazel, A., Fortin, C., Guasch, H. & Sabater, S. (2012). Consistency in diatom response to metal-contaminated environments emerging and priority pollutants in rivers. In H. Guasch, A. Ginebreda & A. Geiszinger (Eds.), The Handbook of Environmental Chemistry (pp. 117–146). Berlin / Heidelberg: Springer. Google Scholar

  • [25] Morin, S., Duong, T.T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schäfer, J., Winterton, P., Blanc, G. & Coste, M. (2008). Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environ. Pollut., 151(3), 532–542. DOI: 10.1016/j.envpol.2007.04.023. http://dx.doi.org/10.1016/j.envpol.2007.04.023CrossrefWeb of ScienceGoogle Scholar

  • [26] Osman, M.E.H., El-Naggar, A.H., El-Sheekh, M.M. & El-Mazally, E.E. (2004). Differential effects of Co2+ and Ni2+ on protein metabolism in Scenedesmus obliquus and Nitzschia perminuta. Environ. Toxicol. Pharmacol., 16(3), 169–178. doi:10.1016/j.etap.2003.12.004. http://dx.doi.org/10.1016/j.etap.2003.12.004CrossrefGoogle Scholar

  • [27] Popovskaya, G., Firsova, A., Bessudova, A., Sakirko, M., Suturin, A. & Likhoshway, Y. (2012). Phytoplankton of the Irkutsk Reservoir as an indicator of water quality. Ocean. Hydrobiol. St., 41(2), 29–38. DOI: 10.2478/s13545-012-0014-2. http://dx.doi.org/10.2478/s13545-012-0014-2CrossrefGoogle Scholar

  • [28] Rai, L.C., Gaur, J.P. & Kumar, H.D. (1981). Phycology and heavy-metal pollution. Biol. Rev. 56(2), 99–151. DOI: 10.1111/j.1469-185X.1981.tb00345.x. http://dx.doi.org/10.1111/j.1469-185X.1981.tb00345.xCrossrefGoogle Scholar

  • [29] Rimet, F. (2012). Recent views on river pollution and diatoms. Hydrobiologia, 683(1), 1–24. DOI: 10.1007/s10750-011-0949-0. http://dx.doi.org/10.1007/s10750-011-0949-0CrossrefWeb of ScienceGoogle Scholar

  • [30] Sabater, S. (2000). Diatom communities as indicators of environmental stress in the Guadiamar River, SW Spain, following a major mine tailings spill. J. Appl. Phycol., 12(2), 113–124. DOI: 10.1023/a:1008197411815. http://dx.doi.org/10.1023/A:1008197411815CrossrefGoogle Scholar

  • [31] Szabó, K., Kiss, K.T., Taba, G. & Ács É. (2005). Epiphytic diatoms of the Tisza River, Kiskore Reservoir and some oxbows of the Tisza River after the cyanide and heavy metal pollution in 2000. Acta Bot. Croat., 64(1), 1–46. Google Scholar

  • [32] ter Braak, C.J.F. & Šmilauer, P. (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Ithaca: Microcomputer Power. Google Scholar

  • [33] Wu, J., Zeng, H., Yu, H., Ma, L., Xu, L. & Qin, B. (2012). Water and sediment quality in lakes along the middle and lower reaches of the Yangtze River, China. Water Resour. Manage., 26(12), 3601–3618. DOI: 10.1007/s11269-012-0093-2. http://dx.doi.org/10.1007/s11269-012-0093-2CrossrefGoogle Scholar

  • [34] Tuovinen, N., Weckström, K. & Salonen, V.P. (2012). Impact of mine drainage on diatom communities of Orijärvi and Määrjävi, lakes in SW Finland. Boreal Env. Res. (in press). Google Scholar

  • [35] Yang, G.S., Ma, R.H, Zhang, L., Jiang, J.H., Yao, S.C. & Zhang, M. (2010). Lake status, major problems and protection strategy in China. J. Lake Sci., 22, 799–810, (in Chinese) Google Scholar

  • [36] Yang, X.D., Anderson, N.J., Dong, X.H. & Shen, J. (2008). Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshw. Biol., 53(7), 1273–1290. DOI: 10.1111/j.1365-2427.2007.01921.x. http://dx.doi.org/10.1111/j.1365-2427.2007.01921.xCrossrefWeb of ScienceGoogle Scholar

  • [37] Zeeb, B.A. & Smol, J.P. (2001) Chrysophyte Scales and Cysts. In J.P. Smol, H.J.B. Birks, W.M. Last, R.S. Bradley & K. Alverson (Eds.), Tracking Environmental Change Using Lake Sediments, vol 3. Terrestrial, Algal, and Siliceous Indicators (pp. 203–223). Dordrecht: Kluwer Academic Publishers. Google Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 3, Pages 233–242, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0079-6.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Hala Yassin El-Kassas and Samiha Mahmoud Gharib
Environmental Monitoring and Assessment, 2016, Volume 188, Number 9
[3]
Yanmin Cao, Enlou Zhang, Hongqu Tang, Peter Langdon, Dongliang Ning, and Wenxiu Zheng
Hydrobiologia, 2016, Volume 779, Number 1, Page 147
[4]
Linghan Zeng, Dongliang Ning, Lei Xu, Xin Mao, and Xu Chen
Bulletin of Environmental Contamination and Toxicology, 2015, Volume 95, Number 3, Page 317
[5]
Xu Chen, Changan Li, Suzanne McGowan, and Xiangdong Yang
Annales de Limnologie - International Journal of Limnology, 2014, Volume 50, Number 2, Page 121

Comments (0)

Please log in or register to comment.
Log in