Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 42, Issue 3

Issues

Residue of chlorinated pesticides in fish caught in the Southern Baltic

Andrzej Reindl
  • Department of Marine Chemistry and Environmental Protection, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-387, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucyna Falkowska
  • Department of Marine Chemistry and Environmental Protection, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-387, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emilia Szumiło
  • Department of Marine Chemistry and Environmental Protection, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-387, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Staniszewska
  • Department of Marine Chemistry and Environmental Protection, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-387, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/s13545-013-0081-z

Abstract

The aim of this study was to estimate the residue of chlorinated pesticides in the edible fish caught in the Gulf of Gdańsk and in the Vistula Lagoon. The highest mean concentrations of total DDT were found in the muscles of salmon (331.45 ng g−1 lw.) and sabre carp (306.29 ng g−1 lw.) caught in the Vistula Lagoon, and in the muscles of cod (309.88 ng g−1 lw.) and herring (304.86 ng g−1 lw.) from the Gulf of Gdańsk. Moreover, it was discovered that the following were present in the muscles of fish: DDT metabolites (pp’-DDE and pp’-DDD isomers) as well as hexachlorobenzene and its metabolites and endrin, dieldrin, α-endosulfan isomers and methoxychlor. Pesticides concentrations were higher in the livers of fish than in the muscles, which proves that the removal of toxins from the fish systems dominates over their accumulation. Because no concentration limits for pesticides have been defined, consumer safety assessment of fish caught in the Southern Baltic and in the Vistula Lagoon is not possible. The authors, having observed an increase in heksachlorobenzen in fish tissues suggested the existence of contemporary sources of pesticides which introduce them into the coastal zone.

Keywords: DDT; heksachlorobenzen; edible fish; Gulf of Gdańsk; Vistula Lagoon

  • [1] Arrhenius, F. & Hansson S. (1992). Food consumption of herring and sprat in the Baltic Sea. ICES, Baltic Fish Committee J, 7, 1–10. Google Scholar

  • [2] Bartel, R. (2001). Return of salmon back to Polish waters. Ecology & Hydrobiology 1,3; 377–392. Google Scholar

  • [3] Bignert, A., Litzén K., Odsjö T., Olsson M., Persson W. & Reutergårdh L. (1995). Time related factors influence the concentrations of sDDT, PCBs and shell parameters in eggs of Baltic Guillemot (Uria aalge), 1861–1989. Environmental Pollution, 89:27–36. http://dx.doi.org/10.1016/0269-7491(94)00046-GCrossrefGoogle Scholar

  • [4] Bignert, A., Danielsson S., Nyberg E., Asplund L., Eriksson U., Berger U. & Haglund P. (2010). Comments Concerning the National Swedish Contaminant Monitoring Programme in Marine Biota, 2010. Report to the Swedish Environmental Protection Agency. Report nr 1:2010, - 154. Google Scholar

  • [5] Brylińska, (2001). Ryby słodkowodne Polski. PWN Warszawa, 141–145. Google Scholar

  • [6] Buszewski, B., Buszewska T., Chmarzyński A., Kowalkowski T., Kowalska J., Kosbucki P., Zbytniewski R., Namieśnik J., Kot-Wasik A., Pacyna J. & Panasiuk D. (2005). The present condition of the Vistula river catchment area and its impact on the Baltic Sea coastal zone. Reg Environ change. 5, 97–110. http://dx.doi.org/10.1007/s10113-004-0077-8CrossrefGoogle Scholar

  • [7] Casini, M., Cardinale M. & Arrhenius F. (2004). Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea, ICES, J. Mar. Sci. 61, 1267–1277. Google Scholar

  • [8] El-Mekkawi, H., Diab M., Zaki M. & Hassan A. (2009). Determination of chlorinated organic pesticide residues in water, sediments and fish farms at Abbassa and Shal Al-Husainia, Shakia governorate. Australian J. Bass. Appl. Sci. 3(4), 4376–4383 Google Scholar

  • [9] Evans, D.W., Dodo D.K. & Hanson P.J. (1993). Trace-element concentrations in fish livers: implications of variations with fish size in pollution monitoring. Mar. Pollut. Bull. 26, 329–334. http://dx.doi.org/10.1016/0025-326X(93)90576-6CrossrefGoogle Scholar

  • [10] Falandysz, J., Brudnowska B., Iwata H. & Tanabe S. (1999a). Organochlorine pesticides and polichronated biphynls in the ambient air in city of Gdańsk. Roczniki PZH. 50(1), 39–48. Google Scholar

  • [11] Falandysz, J., Strandberg B., Strandberg L., Bergqvist P. A. & Rappe Ch. (1999b). Dieldrin, aldrin, endrin, isodrin, endosulphan 1 and 2 on fish in the Gulf of Gdańsk, Roczniki PZH. 50(2), 131–138. Google Scholar

  • [12] Falandysz, J. & Strandberg B. (2004). Persistent organochlorine compounds in sludge and sediments from tha Gdańsk region, Baltic Sea. Pol. J. Env. Stud. 13(2), 133–138 Google Scholar

  • [13] Falkowska L., Reindl A.R., Szumiło E., Kwaśniak J., Staniszewska M., Bełdowska M., Lewandowska A. & Krause I. (2013). Mercury and chlorinated pesticides on the highest level of the food web as exemplified by herring from the Southern Baltic and African penguins from the zoo. Water Air and Soil Pollution 224:1549. DOI: 10.1007/s11270-013-1549-6 http://dx.doi.org/10.1007/s11270-013-1549-6CrossrefWeb of ScienceGoogle Scholar

  • [14] Gąsowska, M. (1962). Klucze do oznaczania kręgowców Polski. Cz. I, Krągłouste-Cyclostomi, Ryby-Pisces. Opracowanie zbiorowe, PWN, Warszawa, Kraków. 240. Google Scholar

  • [15] Grynkiewicz, M., Polkowska Ż., Górecki T. & Namieśnik J. (2001). Pesticides in precipitation in the Gdańsk region (Poland). Chemosphere. 43, 303–312 http://dx.doi.org/10.1016/S0045-6535(00)00130-2CrossrefGoogle Scholar

  • [16] HELCOM, (2010). Hazardous substances in the Baltic Sea — An integrated thematic assessment of hazardous substances in the Baltic Sea. Balt. Sea Environ. Proc. No. 120B. Google Scholar

  • [17] Jackowski, E. (2002). Ryby Zatoki Puckiej. Monografia rybacka, Wydaw. Mor. Inst. Ryb., Gdynia. 108. Google Scholar

  • [18] Koistinen, J. Kiviranta H, Ruokojärvi P, Parmanne R, Verta M, Hallikainen A & Vartiainen T. (2008). Organohalogen pollutants in herring from the northern Baltic Sea: concentrations, congener profiles and explanatory factors. Environ Pollut. 154(2), 172–183. http://dx.doi.org/10.1016/j.envpol.2007.10.019Web of ScienceCrossrefGoogle Scholar

  • [19] Kosikowska M., Szymańska M. & Biziuk M. (2011). Determination of pesticides residues in ambient air in tri-city. [in:] JakośĆ Powietrza a jakośĆ życia. W. Wardencji (ed.), 63–69. Google Scholar

  • [20] Kosior, M., Trella K.K. & Jaworski A., (2001). Fecundity of cod (Gadus morhua callarias L.) in the southern Baltic in the late 1990s. Acta Ichthyol. Piscat. 31(2), 55–75. Google Scholar

  • [21] Kot-Wasik, A., Dębska J. & Namieśnik J. (2004). Monitoring of organic pollutants in coastal waters of the Gulf of Gdańsk, Southern Baltic. Mar. Poll. Bull. 49, 264–276. http://dx.doi.org/10.1016/j.marpolbul.2004.02.014CrossrefGoogle Scholar

  • [22] Kwaśniak J. & Falkowska L. (2012). Mercury distribution in muscles and internal organs of the juvenile and adult Baltic cod (Gadus morrhua callarias Linnaeus, 1758). Oceanol. Hydrobiol. Stud. 41(2), 65–71. DOI: 10.2478/s13545-012-0018-y http://dx.doi.org/10.2478/s13545-012-0018-yWeb of ScienceCrossrefGoogle Scholar

  • [23] Moilanen, R., Pyysalo H., Wickström K. & Linko R. (1982). Time trend of chlordane, DDT and PCB concentration in Pike (Esox Lucius) and Baltic Herring (Clupea harengus) in the Turku Archipelago, Northern Baltic Sea for the period 1971–1982. Bull. Environm. Contam. Toxicol. 29, 334–340. http://dx.doi.org/10.1007/BF01706237CrossrefGoogle Scholar

  • [24] Nfon, E, Cousins I.T. & Broman D. (2008). Biomagnification of organic pollutants in benthic and pelagic marine food chains from the Baltic Sea. Sci Total Environ. 397(1–3), 190–204. http://dx.doi.org/10.1016/j.scitotenv.2008.02.029CrossrefGoogle Scholar

  • [25] Olsson, M., Bignert, A., Aune, M., Haarich, M., Harms, U., Korhonen, M., Poutanen, E., Roots, O. & Sapota, G. (2003). Organic contaminants. Chapter in Forth Periodic Assessment of the State of the Marine Environment of the Baltic Sea Area, 1994–1998. Baltic Marine Environment Protection Commission 2002. pp 133–140. Google Scholar

  • [26] Reindl, A.R., Bolałek J. & Falkowska L. (2013). Persistent organic pollutants (POPs) in the marine food web: herrings from the southern Baltic Sea (Clupea harengus) — penguins from the zoo (Spheniscus demersus). Oceanol. Hydrobiol. Stud. 42(1). DOI: 10.2478/s13545-000-0000-0 CrossrefGoogle Scholar

  • [27] Roots, O. & Talvari A. (1997). Bioaccumulation of the toxic chlororganic compounds and their isomers into the organism of Baltic grey seals. Chemosphere. 35(5), 979–985. http://dx.doi.org/10.1016/S0045-6535(97)00183-5CrossrefGoogle Scholar

  • [28] Sapota, G. (1997). Chlorinated hydrocarbons in sediments from the Vistula Lagoon. Oceanol. Hydrobiol. Stud. 26(2–3), 61–69. Google Scholar

  • [29] Sapota, G. (2006). Decreasing trend of persistent organic pollutants (POPs) in herring from the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 35(1), 15–21. Google Scholar

  • [30] Strandberg, B., Strandberg L., van Bavel B., Bergqvist P.A., Broman D., Falandysz J., Näf C., Papakosta O., Rolff C. & Rappe C. (1998a). Concentrations and spatial variations of cyclodienes and other organochlorines in herring and perch from the Baltic Sea. Sci Total Environ. 215(1–2), 69–83. http://dx.doi.org/10.1016/S0048-9697(98)00114-4CrossrefGoogle Scholar

  • [31] Strandberg, B., Bandh C., Van Bavel B., Bergqvist P. A., Broman D., Näf C., Pettersen H. & Rappe C. (1998b). Concentrations, biomagnification and spatial variation of organochlorine compounds in a pelagic food web in the northern part of the Baltic Sea, Sci. Tot. Environ. 217, 143–154. http://dx.doi.org/10.1016/S0048-9697(98)00173-9CrossrefGoogle Scholar

  • [32] Szlinder-Richert, J., Barska I., Mazerski J. & Usydus Z. (2008). Organochlorine pesticidies in fish from the southern Baltic Sea — levels, bioaccumulation features and temporal trends during the period from 1997 to 2006. Mar. Poll. Bull. 56(5), 927–940. http://dx.doi.org/10.1016/j.marpolbul.2008.01.029Web of ScienceCrossrefGoogle Scholar

  • [33] Terlecki, J. (2000). Ciosa, Pelecus cultratus (Linnaeus, 1758). In: Ryby słodkowodne Polski. M. Brylińska (ed.). Warszawa, PWN. 322–328. Google Scholar

  • [34] Wiener, J. G., Krabbenhoft D. P., Heinz G. H. & Scheuhammer A. M. (2003). Ecotoxicology of mercury. In: Hoffman, DJ, Rattner BA, Burton GA, Cairns J, editors. Handbook of ecotoxicology. Boca Raton7 Lewis Publ. 409–463. Google Scholar

  • [35] Wiśniewolski, W., Augustyn L., Bartel R., Depowski R., Dębowski P., Klich M., Kolman R. & Witkowski A. (2004). Możliwości odtworzenia populacji ryb wędrownych (jesiotra — Acipenser sturio/A. oxyrhynchus, łososia — Salmo salar, troci — Salmo trutta trutta i certy — Vimba vimba) w polskich rzekach. WWF Polska, Warszawa. 42. Google Scholar

  • [36] Vorkamp, K., Christensen J. H., Glasius M. & Riget F. F. (2004). Persistent chalogenated compounds in black guillemots (Cepphus grylle) from Greenland — levels, compound patterns and spatial trends. Mar. Poll. Bull. 48, 111–121. http://dx.doi.org/10.1016/S0025-326X(03)00369-2CrossrefGoogle Scholar

  • [37] Zitko, V. (2003). Chlorinated pesticides: Aldrin, DDT, endrin, dieldrin, mirex. Pages 47–90 in The Handbook of Environmental Chemistry (H. Fiedler, ed), vol. 3, Part O, Persistent Organic Pollutants. Springer Verlag Berlin, Heidelberg. Google Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 3, Pages 251–259, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0081-z.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Olga N. Lukyanova, Vasiliy Yu. Tsygankov, and Margarita D. Boyarova
Marine Pollution Bulletin, 2018, Volume 137, Page 152
[2]
Andrzej R. Reindl and Jerzy Bolałek
Environmental Monitoring and Assessment, 2018, Volume 190, Number 7
[3]
Andrzej R. Reindl, Lucyna Falkowska, and Agnieszka Grajewska
Water, Air, & Soil Pollution, 2015, Volume 226, Number 8
[4]
Lucyna Falkowska and Andrzej R. Reindl
Journal of Environmental Science and Health, Part A, 2015, Volume 50, Number 10, Page 1029
[5]
Tatiana Guellard, Ewa Sokołowska, and Bartłomiej Arciszewski
Oceanologia, 2015, Volume 57, Number 1, Page 102
[6]
Andrzej R. Reindl and Lucyna Falkowska
Archives of Environmental Contamination and Toxicology, 2015, Volume 68, Number 2, Page 259

Comments (0)

Please log in or register to comment.
Log in