Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 42, Issue 3

Issues

Composition of protozoan communities at two sites in the coastal zone of the southern Baltic Sea

Krzysztof Rychert / Katarzyna Spich / Kinga Laskus / Michalina Pączkowska / Magdalena Wielgat-Rychert / Gracjan Sojda
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/s13545-013-0083-x

Abstract

Protozoan communities were studied in the coastal zone of the southern Baltic Sea. Stable environmental conditions and typical, bimodal seasonal changes in the protozoan biomass were observed at the sampling site in Sopot (2003–2004). At the sampling site in Ustka (2007–2008), strong benthic resuspension and irregular impacts of fresh water resulted in atypical seasonal changes in the protozoan biomass with a summer peak only. The mean annual biomass had similar values at both sites: 43.2 μg C dm−3 in Sopot and 38.6 μg C dm−3 in Ustka. The protozoan community in Sopot was dominated by ciliates (48% of the biomass), whereas in Ustka — by heterotrophic nanoflagellates (53%).

Keywords: ciliates; flagellates; HNF; dinoflagellates; Baltic Sea; coastal zone

  • [1] Arndt, H. (1991). On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. Int. Revue ges. Hydrobiol. 3, 387–396. http://dx.doi.org/10.1002/iroh.19910760311CrossrefGoogle Scholar

  • [2] Arndt, H., Jost G. & Wasmund N. (1990). Dynamics of pelagic ciliates in eutrophic estuarine waters: importance of functional groups among ciliates and responses to bacterial and phytoplankton production. Arch. Hydrobiol. Beih. Ergebn. Limnol. 34, 239–245. Google Scholar

  • [3] Azam, F., Fenchel T., Field J. D., Gray J. S., Meyer-Reil L. A. & Thingstad F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263. http://dx.doi.org/10.3354/meps010257CrossrefGoogle Scholar

  • [4] Beaver, J.R. & Crisman T.L. (1989). The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17, 111–136. http://dx.doi.org/10.1007/BF02011847CrossrefGoogle Scholar

  • [5] Bloem, J., Bär-Glissen M-J. B. & Cappenberg T. E. (1986). Fixation, counting and manipulation of heterotrophic nanoflagellates. Appl. Environ. Microbiol. 52, 1226–1272. Google Scholar

  • [6] Boikova, E. (1984). Ecological character of protozoans (Ciliata, Flagellata) in the Baltic Sea. Ophelia 3, 23–32. Google Scholar

  • [7] Børsheim, K. Y. & Bratbak G. (1987). Cell volume to carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36, 171–175. http://dx.doi.org/10.3354/meps036171CrossrefGoogle Scholar

  • [8] Bralewska, J. & Witek Z. (1995). Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk. Mar. Ecol. Prog. Ser. 117, 241–248. http://dx.doi.org/10.3354/meps117241CrossrefGoogle Scholar

  • [9] Brandt, S. M. & Sleigh M. A. (2000). The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton Water, U.K. Estuar. Coast. Shelf Sci. 51, 91–102. http://dx.doi.org/10.1006/ecss.2000.0607CrossrefGoogle Scholar

  • [10] Caron, D. A. (1983). Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46, 491–498. Google Scholar

  • [11] Caron, D. A. (2000). Symbiosis and mixotrophy among pelagic microorganisms. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 495–523). New York: Wiley-Liss. Google Scholar

  • [12] Caron, D. A. & Swanberg N. R. (1990). The ecology of planktonic sarcodines. Aquat. Sci. 3, 147–180. Google Scholar

  • [13] Crawford, D. W. (1989). Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. Prog. Ser. 58, 161–174. http://dx.doi.org/10.3354/meps058161CrossrefGoogle Scholar

  • [14] Edler, L. (1979). Recommendations on methods for marine biological studies. Malmö: BMB Publ. Google Scholar

  • [15] Esteban, G. F., Fenchel T. & Finlay B. J. (2010). Mixotrophy of ciliates. Protist 161, 621–641. http://dx.doi.org/10.1016/j.protis.2010.08.002CrossrefGoogle Scholar

  • [16] Garstecki, T., Verhoeven R., Wickham S. A. & Arndt H. (2000). Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Fresh. Biol. 45, 147–167. http://dx.doi.org/10.1046/j.1365-2427.2000.00676.xCrossrefGoogle Scholar

  • [17] Granda, A. P. & Álvarez R. A. (2008). The annual cycle of nanoflagellates in the Central Cantabrian Sea (Bay of Biscay). J. Marine Syst. 72, 298–308. http://dx.doi.org/10.1016/j.jmarsys.2007.09.009CrossrefGoogle Scholar

  • [18] Grinienė, E., Mažeikaitė S. & Gasiūnaitė Z. R. (2011). Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Oceanol. Hydrobiol. Stud. 40, 86–95. http://dx.doi.org/10.2478/s13545-011-0045-0CrossrefGoogle Scholar

  • [19] Hansen, P. J. (1991). Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73, 253–261. http://dx.doi.org/10.3354/meps073253CrossrefGoogle Scholar

  • [20] HELCOM. (1998). The third Baltic Sea pollution load compilation. Helsinki: Balt. Sea Environ. Proc. 70. Google Scholar

  • [21] HELCOM. (2006). Biovolumes and size classes of phytoplankton in the Baltic Sea. Helsinki: Balt. Sea Environ. Proc. 106. Google Scholar

  • [22] Ikävalko, J. (1998). Further observations on flagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol. 19, 323–329. http://dx.doi.org/10.1007/s003000050253CrossrefGoogle Scholar

  • [23] Ikävalko, J. & Thomsen H. A. (1997). The Baltic Sea ice biota (March 1994): a study of the protistan community. Eur. J. Protistol. 33, 229–243. http://dx.doi.org/10.1016/S0932-4739(97)80001-6CrossrefGoogle Scholar

  • [24] Johnson, M. D. & Stoecker D. K. (2005). Role of feeding in growth and photophysiology of Myrionecta rubra. Aquat. Microb. Ecol. 39, 303–312. http://dx.doi.org/10.3354/ame039303CrossrefGoogle Scholar

  • [25] Kirchman, D. L. & Williams P. J. LeB. (2000). Introduction. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 1–11). New York: Wiley-Liss. Google Scholar

  • [26] Kiss, Á. K., & Ács É., Kiss K. T. & Török J. K. (2009). Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45, 121–138. http://dx.doi.org/10.1016/j.ejop.2008.08.002CrossrefGoogle Scholar

  • [27] Kivi, K. (1986). Annual succession of pelagic protozoans and rotifers in the Tvärminne Storfjärden, SW coast of Finland. Ophelia Suppl. 4, 101–110. Google Scholar

  • [28] Kopylov, A. I., Kosolapov D. B., Romanenko A. V. & Degermendzhy A. G. (2002). Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquat. Ecol. 36, 179–204. http://dx.doi.org/10.1023/A:1015678918611CrossrefGoogle Scholar

  • [29] Kwiatkowska, M. (1999). Autotrophic and heterotrophic dinoflagellates in the coastal zone of the Gulf of Gdańsk. Unpublished master dissertation, University of Gdańsk, Gdańsk, Poland. (in Polish) Google Scholar

  • [30] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114, 67–83. Google Scholar

  • [31] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1993). Planktonic ciliates in Southampton Water: quantitative taxonomic studies. J. Mar. Biol. Ass. U.K. 73, 579–594. http://dx.doi.org/10.1017/S0025315400033129CrossrefGoogle Scholar

  • [32] Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1994). A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16, 375–389. http://dx.doi.org/10.1093/plankt/16.4.375CrossrefGoogle Scholar

  • [33] Leppänen, J.-M. & Bruun J.-E. (1988). Cycling of organic matter during the vernal growth period in the open northern Baltic Proper. IV. Ciliate and mesozooplankton species composition, biomass, food intake, respiration, and production. Finn. Mar. Res. 255, 55–78. Google Scholar

  • [34] Lesen, A. E., Juhl A. R. & Anderson O. R. (2010). Heterotrophic microplankton in the lower Hudson River Estuary: potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquat. Microb. Ecol. 61, 45–56. http://dx.doi.org/10.3354/ame01434CrossrefGoogle Scholar

  • [35] Lessard, E. J. & Swift E. (1985). Dinoflagellates from the North Atlantic classified as phototrophic or heterotrophic by epifluorescence microscopy. J. Plankton Res. 8, 1209–1215. http://dx.doi.org/10.1093/plankt/8.6.1209CrossrefGoogle Scholar

  • [36] Levinsen, H., Nielsen T. G. & Hansen B. W. (2000). Annual succession of marine pelagic protozoans in Disko Bay, West Greenland, with emphasis on winter dynamics. Mar. Ecol. Prog. Ser. 206, 119–134. http://dx.doi.org/10.3354/meps206119CrossrefGoogle Scholar

  • [37] Mackiewicz, T. (1991). Composition and seasonal changes of nanoflagellates in the Gdańsk Basin (Southern Baltic). Acta Ichthyol. Piscat. 21, 125–134. Google Scholar

  • [38] Majewski, A. (1987). Characteristics of waters. In B. Augustowski (Ed.), Southern Baltic (pp. 173–217). Wrocław: Ossolineum. (in Polish) Google Scholar

  • [39] Marshall, S. M. (1969). Protozoa. Order: Tintinnida. Cons. Int. Explor. Mer. Zooplankton Sheets, 117–127. Google Scholar

  • [40] Mathes, J. & Arndt H. (1995). Annual cycle of protozooplankton (ciliates, flagellates and sarcodines) in relation to phyto- and metazooplankton in Lake Neumühler See (Mecklenburg, Germany). Arch. Hydrobiol. 134, 337–358. Google Scholar

  • [41] Mironova, E. I., Telesh I. V. & Skarlato S. O. (2009). Planktonic ciliates of the Baltic Sea (a review). Inland Water Biol. 2, 13–24. http://dx.doi.org/10.1134/S1995082909010039CrossrefGoogle Scholar

  • [42] Montagnes, D. J. S., Allen J., Brown L., Bulit C., Davidson R., Fielding S., Heath M., Holliday N. P., Rasmussen J., Sanders R., Waniek J. J. & Wilson D. (2010). Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411, 101–115. http://dx.doi.org/10.3354/meps08646CrossrefGoogle Scholar

  • [43] Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18, 261–273. http://dx.doi.org/10.1007/BF02075813CrossrefGoogle Scholar

  • [44] Piwosz, K. & Pernthaler J. (2010). Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic. Environ. Microbiol. 12, 364–377. http://dx.doi.org/10.1111/j.1462-2920.2009.02074.xCrossrefGoogle Scholar

  • [45] Pollehne, F., Busch S., Jost G., Meyer-Harms B., Nausch M., Reckermann M., Schaening P., Setzkorn D., Wasmund N. & Witek Z. (1995). Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (southern Baltic). Bull. Sea Fish. Inst. 136, 43–60. Google Scholar

  • [46] Rogerson, A., Anderson O. R. & Vogel C. (2003). Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res. 25, 1359–1365. http://dx.doi.org/10.1093/plankt/fbg102CrossrefGoogle Scholar

  • [47] Rychert, K. (2005). Protozoan communities and their impact on oxygen consumption in the near-bottom zone of the Gdańsk Basin. Unpublished doctoral dissertation, Institute of Oceanology PAS, Sopot, Poland. (in Polish) Google Scholar

  • [48] Rychert, K. (2006). Nanoflagellates in the Gdańsk Basin: coexistence between forms belonging to different trophic types. Oceanologia 48, 323–330. Google Scholar

  • [49] Rychert, K. (2011). Communities of heterotrophic protists (protozoa) in the near-bottom zone of the Gdańsk Basin. Oceanol. Hydrobiol. Stud. 40, 68–73. http://dx.doi.org/10.2478/s13545-011-0031-6CrossrefGoogle Scholar

  • [50] Rychert, K. & Pączkowska M. (2012). Ciliate Mesodinium rubrum in the coastal zone of the southern Baltic Sea (central Pomerania). Baltic Coastal Zone 16, 97–102. Google Scholar

  • [51] Rychert, K. & Wielgat-Rychert M. (2008). Biodegradable organic master in the coastal waters of Central Pomerania (Ustka) and the Gulf of Gdańsk (Sopot). In E. Bajkiewicz-Grabowska & D. Borowiak (Eds), Anthropogenic and natural transformations of lakes, 2 (pp. 179–182). Gdańsk: KLUG-PTLim Publ. Google Scholar

  • [52] Samuelsson, K., Berglund J. & Andersson A. (2006). Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J. Plankton Res. 28, 345–359. http://dx.doi.org/10.1093/plankt/fbi118CrossrefGoogle Scholar

  • [53] Schweizer, M., Polovodova I., Nikulina A. & Schönfeld J. (2011). Molecular identification of Ammonia and Elphidium species (Foraminifera, Rotaliida) from the Kiel Fjord (SW Baltic Sea) with rDNA sequences. Helgol. Mar. Res. 65, 1–10. http://dx.doi.org/10.1007/s10152-010-0194-3CrossrefGoogle Scholar

  • [54] Setälä, O. & Kivi K. (2003). Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquat. Microb. Ecol. 32, 287–297. http://dx.doi.org/10.3354/ame032287CrossrefGoogle Scholar

  • [55] Sherr, E. B., Caron D. A. & Sherr B. F. (1993). Staining of heterotrophic protists for visualization via epifluorescence microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 213–227). Boca Raton: Levis Publishers. Google Scholar

  • [56] Sherr, E. B. & Sherr B. F. (1993). Preservation and storage of samples for enumeration of heterotrophic protists. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 207–212). Boca Raton: Levis Publishers. Google Scholar

  • [57] Sherr, E. B. & Sherr B. F. (1994). Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28, 223–235. http://dx.doi.org/10.1007/BF00166812CrossrefGoogle Scholar

  • [58] Sherr, E. B. & Sherr B. F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81, 293–308. http://dx.doi.org/10.1023/A:1020591307260CrossrefGoogle Scholar

  • [59] Šimek, K., Jürgens K., Nedoma J., Comerma M. & Armengol J. (2000). Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22, 43–56. http://dx.doi.org/10.3354/ame022043CrossrefGoogle Scholar

  • [60] Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63, 1–11. http://dx.doi.org/10.1007/BF00394657CrossrefGoogle Scholar

  • [61] Strüder-Kypke, M. C. & Montagnes D. J. S. (2002). Development of web-based guides to planktonic protists. Aquat. Microb. Ecol. 27, 203–207. http://dx.doi.org/10.3354/ame027203CrossrefGoogle Scholar

  • [62] Suzuki, T. & Taniguchi A. (1998). Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382. http://dx.doi.org/10.1007/s002270050404CrossrefGoogle Scholar

  • [63] Suzuki, T., Yamada N. & Taniguchi A. (1998). Standing crops of planktonic ciliates and nanoplankton in oceanic waters of the western Pacific. Aquat. Microb. Ecol. 14, 49–58. http://dx.doi.org/10.3354/ame014049CrossrefGoogle Scholar

  • [64] Thomsen, H. A. (1992). Plankton from inner Danish waters. An analysis of the autotrophic and heterotrophic protists (excl. ciliates) in Kattegat. Havforskning fra Miløstyrelsen, 11, pp. 331. (in Danish) Google Scholar

  • [65] Urrutxurtu, I., Orive E. & de la Sota A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci. 57, 1169–1182. http://dx.doi.org/10.1016/S0272-7714(03)00057-XCrossrefGoogle Scholar

  • [66] Utermöhl, H. (1958). Improving quantitative methods for phytoplankton analyses. Mitt. Int. Ver. Limnol. 9, 1–38. (in German) Google Scholar

  • [67] van Beusekon, J. E. E., Mengedoht D., Augustin Ch. B., Schilling M. & Boersma M. (2009). Phytoplankton, protozooplankton and nutrient dynamics in the Bornholm Basin (Baltic Sea) in 2002–2003 during the German GLOBEC Project. Int. J. Earth Sci. 98, 251–260. http://dx.doi.org/10.1007/s00531-007-0231-xCrossrefGoogle Scholar

  • [68] Verity, P. G. & Langdon C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6, 859–867. http://dx.doi.org/10.1093/plankt/6.5.859CrossrefGoogle Scholar

  • [69] Vørs, N. (1992). Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia 36, 1–109. http://dx.doi.org/10.1080/00785326.1992.10429930CrossrefGoogle Scholar

  • [70] Wasik, A. & Mikołajczyk E. (1996). The seasonal distribution of hyaline Helicostomella subulata and agglutinated Tintinnopsis labiancoi — dominants of the Baltic Tintinnina (Ciliophora). Oceanologia 38, 405–418. Google Scholar

  • [71] Weitere, M. & Arndt H. (2002). Water discharge-regulated bacteria-heterotrophic nanoflagellate (HNF) interactions in the water column of the River Rhine. Microb. Ecol. 44, 19–29. http://dx.doi.org/10.1007/s00248-002-2010-3CrossrefGoogle Scholar

  • [72] Witek, B. & Pliński M. (2005). The occurrence of dinoflagellates in the phytoplankton of the Gulf of Gdańsk coastal zone in 1994–1997. Oceanol. Hydrobiol. Stud. 2, 63–70. Google Scholar

  • [73] Witek, M. (1994). Planktonic ciliates of the Gdańsk Basin. Unpublished doctoral dissertation, Sea Fisheries Institute, Gdynia, Poland. (in Polish) Google Scholar

  • [74] Witek, M. (1998). Annual Changes of Abundance and Biomass of Planktonic Ciliates in the Gdańsk Basin, Southern Baltic. Internat. Rev. Hydrobiol. 83, 163–182. http://dx.doi.org/10.1002/iroh.19980830207CrossrefGoogle Scholar

  • [75] Witek, Z. (1995). Biological production and its utilization within a marine ecosystem in the western Gdańsk Basin. Gdynia: Sea Fisheries Institute Publ. (in Polish) Google Scholar

  • [76] Witek, Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T. & Wrzesińska-Kwiecień M. (1997). Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Mar. Ecol. Prog. Ser. 148, 169–186. http://dx.doi.org/10.3354/meps148169CrossrefGoogle Scholar

  • [77] Wrzesińska-Kwiecień, M. & Mickiewicz T. (1995). Protozooplankton of the Pomeranian Bay (southern Balic). Bull. Sea Fish. Inst. 136, 89–95. Google Scholar

  • [78] Yang, E. J., Choi J. K. & Hyun J.-H. (2008). Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar. Coast. Shelf Sci. 77, 320–330. http://dx.doi.org/10.1016/j.ecss.2007.09.034CrossrefGoogle Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 3, Pages 268–276, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0083-x.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Kasia Piwosz, Joanna Całkiewicz, Marcin Gołębiewski, and Simon Creer
Estuarine, Coastal and Shelf Science, 2018
[2]
Krzysztof Rychert, Justyna Kozłowska, Kamila Krawiec, Natalia Czychewicz, Michalina Pączkowska, and Magdalena Wielgat-Rychert
Oceanological and Hydrobiological Studies, 2016, Volume 45, Number 3
[3]
Krzysztof Rychert, Magdalena Wielgat-Rychert, Marta Wołoszynek, and Gracjan Sojda
Ecohydrology & Hydrobiology, 2015, Volume 15, Number 4, Page 215
[4]
Krzysztof Rychert, Bożena Nawacka, Roman Majchrowski, and Tomasz Zapadka
Oceanological and Hydrobiological Studies, 2014, Volume 43, Number 4

Comments (0)

Please log in or register to comment.
Log in