Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 42, Issue 3


Modeling of egg production by Temora longicornis from the southern Baltic Sea including salinity

Lidia Dzierzbicka-Głowacka / Anna Lemieszek / Maja Musialik / Iwona Żmijewska
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/s13545-013-0084-9


The paper presents modeling of egg production (Egg — no. of eggs female−1 d−1) by Temora longicornis in the changing environmental conditions of the southern Baltic Sea (Gdańsk Deep). It is hypothesized that the food-saturated rate of egg matter production is equivalent to the specific growth rate of copepods. Based on the findings from the south-western Baltic Sea, Egg of T. longicornis is evaluated as a function of food concentration, temperature and salinity over a wide range of these parameters. Subsequently, the rate of reproduction during the seasons in the Gulf of Gdańsk is determined. According to our calculations, values of Egg reach ca 11 eggs per day in April and decline strongly in June-July, while the second smaller peak in reproduction occurs in September, ca 8 eggs per day. Our results suggest that egg production rates of T. longicornis depend not only on food concentration and temperature, but also on salinity, which is a masking factor in the Baltic Sea.

Keywords: Egg production; Temora longicornis; Gulf of Gdańsk; Baltic Sea; modeling

  • [1] Alonzo, F., Mayzaud, P. & Razouls, S. (2001). Egg production and energy storage in relation to feeding conditions in the subantarctic calanoid copepod Drepanopus pectinatus: an experimental study of reproduction strategy. Mar. Ecol. Prog. Ser. 209, 231–242. http://dx.doi.org/10.3354/meps209231CrossrefGoogle Scholar

  • [2] Ambler, J. W. (1985). Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuar. Coast. Shelf Sci. 20, 743–760. http://dx.doi.org/10.1016/0272-7714(85)90030-7CrossrefGoogle Scholar

  • [3] Antajan, E. (2004). Responses of calanoid copepods to changes in phytoplankton dominance in the diatom — Phaeocystis globosa dominated Belgium coastal waters. Published doctoral dissertation, University of Brussel, Belgium. Google Scholar

  • [4] Arendt, K. E., Jónasdóttir, S. H., Hansen, P. J. & Gärtner, S. (2005). Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Mar. Biol. 146, 513–530. http://dx.doi.org/10.1007/s00227-004-1457-9CrossrefGoogle Scholar

  • [5] Bakker, C. & Van Rijswijk, P. (1987). Development time and growth rate of the marine calanoid copepod Temora longicornis as related to food conditions in the Oosterschelde estuary (southern North Sea). Nether. J. Sea Res. 21(2), 125–145. http://dx.doi.org/10.1016/0077-7579(87)90028-7CrossrefGoogle Scholar

  • [6] Bautista, B., Harris, P. R. & Rodriguez, V. (1994). Temporal variability in copepod fecundity during two different spring bloom periods in coastal waters off Plymouth (SW England). J. Plankton Res. 16(10), 1367–1377. http://dx.doi.org/10.1093/plankt/16.10.1367CrossrefGoogle Scholar

  • [7] Beckman, B. R. & Peterson, T. W. (1986). Egg production by Acartia tonsa in Long Island Sound. J. Plankton Res. 8, 917–925. http://dx.doi.org/10.1093/plankt/8.5.917CrossrefGoogle Scholar

  • [8] Berggreen, U., Hansen, B. & Kiørboe, T. (1988). Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol. 99, 341–352. http://dx.doi.org/10.1007/BF02112126CrossrefGoogle Scholar

  • [9] Burdloff, D., Gasparini, S., Villate, F., Uriarte, I., Cotano, U., Sautour, B. & Etcheber, H. (2002). Egg production of the copepod Acartia bifilosa in two contrasting European estuaries in relation to seston composition. J. Exp. Mar. Biol. Ecol. 274, 1–17. http://dx.doi.org/10.1016/S0022-0981(02)00133-8CrossrefGoogle Scholar

  • [10] Carotenuto, Y., Ianora, A., Buttino, I., Romano, G. & Miralto, A. (2002). Is postembryonic development in the copepod Temora stylifera negatively affected by diatom diets? J. Exp.Mar.Biol. Ecol. 276, 49–66. http://dx.doi.org/10.1016/S0022-0981(02)00237-XCrossrefGoogle Scholar

  • [11] Castellani, C. & Lucas, I. A. N. (2003). Seasonal variation in egg morphology and hatching success in the calanoid copepods Temora longicornis, Acartia clausi and Centropages hamatus. J. Plankton Res. 25(5), 527–537. http://dx.doi.org/10.1093/plankt/25.5.527CrossrefGoogle Scholar

  • [12] Checkley, D. M. Jr. (1980). The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol. Oceanogr. 25(3), 430–446. http://dx.doi.org/10.4319/lo.1980.25.3.0430CrossrefGoogle Scholar

  • [13] Corkett, C. J. & Zillioux, J. (1975). Studies on the effect of temperature on the egg laying of three species of calanoid copepods in the laboratory. Bull.Plankton Soc. Jpn. 21, 13–21. Google Scholar

  • [14] Cotonnec, G., Brunet, C., Sautour, N. & Thoumelin, G. (2001). Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystis sp. in the English Channel, as determined by pigment and fatty acid analyses. J. Plankton Res. 23, 693–703. http://dx.doi.org/10.1093/plankt/23.7.693CrossrefGoogle Scholar

  • [15] Dagg, M. (1978). Estimated, in situ, rates of egg production for the copepod Centropages typicus (Kroyer) in the New York Bight ? J. Exp. Mar. Biol. Ecol. 34, 183–196. http://dx.doi.org/10.1016/S0022-0981(78)80001-XCrossrefGoogle Scholar

  • [16] Dam, H. G. & Peterson, W. T. (1991). In situ feeding behaviour of the copepod Temora longicornis: effects of seasonal changes in chlorophyll size fraction and female size. Mar. Ecol. Prog. Ser. 71, 113–123. http://dx.doi.org/10.3354/meps071113CrossrefGoogle Scholar

  • [17] Devreker, D., Souissi, S. & Seuront, L. (2005). Effects of chlorophyll concentration and temperature variation on the reproduction and survival of Temora longicornis (Copepoda, Calanoida) in the Eastern English Channel? J. Exp. Mar. Biol. Ecol. 318, 145–162. http://dx.doi.org/10.1016/j.jembe.2004.12.011CrossrefGoogle Scholar

  • [18] Dzierzbicka-Glowacka, L. (2004a). Growth and development of copepodite stages of Pseudocalanus spp.. J. Plankton Res. 26, 49–60. http://dx.doi.org/10.1093/plankt/fbh002CrossrefGoogle Scholar

  • [19] Dzierzbicka-Glowacka, L. (2004b). The dependence of body weight in copepodite stages of Pseudocalanus spp. on variations of ambient temperature and food concentration. Oceanologia 46, 45–63. Google Scholar

  • [20] Dzierzbicka-Glowacka, L. (2005a). A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf. J. Mar. Sys. 53, 19–36. http://dx.doi.org/10.1016/j.jmarsys.2004.05.001CrossrefGoogle Scholar

  • [21] Dzierzbicka-Glowacka, L. (2005b). Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A Coupled Ecosystem Model. Oceanologia 47, 591–619. Google Scholar

  • [22] Dzierzbicka-Glowacka, L. (2005c). Equivalence of rates of growth and egg production of Pseudocalanus. Oceanol. Hydrobiol. Stud. 34(4), 19–32. Google Scholar

  • [23] Dzierzbicka-Glowacka, L., Bielecka, L. & Mudrak, S. (2006a). Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep) — numerical simulations. Biogeosciences 3, 635–650. http://dx.doi.org/10.5194/bg-3-635-2006CrossrefGoogle Scholar

  • [24] Dzierzbicka-Glowacka, L. (2006b). Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations. Oceanologia 48(1), 41–71. Google Scholar

  • [25] Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2009a). Parameterization of a population model for Acartia spp. in the southern Baltic Sea. Part 1: Development time. Oceanologia 51(2), 165–184. http://dx.doi.org/10.5697/oc.51-2.165CrossrefGoogle Scholar

  • [26] Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2009b). Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production. Oceanologia 51(2), 185–201. http://dx.doi.org/10.5697/oc.51-2.185CrossrefGoogle Scholar

  • [27] Dzierzbicka-Glowacka, L., Żmijewska, M. I., Mudrak, S., Jakacki, J. & Lemieszek, A. (2010). Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea. Biogeosciences 7, 2247–2259. http://dx.doi.org/10.5194/bg-7-2247-2010CrossrefGoogle Scholar

  • [28] Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M. I. (2011a). Development and growth of Temora longicornis: numerical simulations using laboratory culture data. Oceanologia 53(1), 137–161. http://dx.doi.org/10.5697/oc.53-1.137CrossrefGoogle Scholar

  • [29] Dzierzbicka-Glowacka, L., Jakacki, J., Janecki, M. & Nowicki, A. (2011b). Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea. Oceanologia, 53(1-TI), 449–470. http://dx.doi.org/10.5697/oc.53-1-TI.449CrossrefGoogle Scholar

  • [30] Dzierzbicka-Glowacka, L., Piskozub, J., Jakucki, J., Mudrak, S. & Żmijewska, M. (2012a). Spatiotemporal distribution of copepod populations in the Gulf of Gdańsk (southern Baltic Sea). J. Oceanogr. 67(1), (DOI: 10.1007/s10872-012-0142-8). CrossrefGoogle Scholar

  • [31] Dzierzbicka-Glowacka, L., Kalarus, M., Janecki, M., Musialik, M., Mudrak, S. & Żmijewska M. (2012b). Population dynamics of Pseudocalanus minutus elongatus in the Gulf of Gdańsk (southern Baltic Sea) — experimental and numerical results. J. Nat. Hist. (DOI:10.1080/00222933.2012.722698). CrossrefGoogle Scholar

  • [32] Dzierzbicka-Głowacka, L., Jakacki, J., Nowicki A., Janecki, M. (2013). Activation of the operational ecohydrodynamic model (3D CEMBS) — the hydrodynamic part. Oceanologia, 55(3), 519–541 (DOI:10.5697/oc.55-3.519 ). CrossrefGoogle Scholar

  • [33] Dzierzbicka-Głowacka, L., Jakacki, J., Nowicki A., Janecki, M. (2013). Activation of the operational ecohydrodynamic model (3D CEMBS) — the ecosystem module. Oceanologia, 55(3), 543–572 (DOI:10.5697/oc.55-3.543). CrossrefGoogle Scholar

  • [34] Evjemo, J. O., Tokle, N., Vadstein, O. & Olsen, Y. (2008). Effect of essential dietary fatty acids on egg production and hatching success of the marine copepod Temora longicornis. J. Exp.. Mar. Biol. Ecol. 365, 31–37. http://dx.doi.org/10.1016/j.jembe.2008.07.032CrossrefGoogle Scholar

  • [35] Fockedey, N. & Mees, J. (1999). Feeding of the hyperbenthic mysid Neomysis integer in the maximum turbidity zone of the Elbe, Westerschelde and Gironde estuaries. J. Mar. Sys. 22, 207–228. http://dx.doi.org/10.1016/S0924-7963(99)00042-1CrossrefGoogle Scholar

  • [36] Fransz, H. G., Gonzalez, S. R. & Klein Breteler, W. C. M. (1989). Fecundity as a factor controlling the seasonal population cycle in Temora longicornis (Copepoda, Calanoida). In J. S. Ryland & P. A. Tyler (Eds.), Reproduction, genetics and distributions of marine organisms. Procedings of the 23rd European Marine Biology Symposium (pp. 83–89) Olsen and Olsen, Fredensborg, Denmark. Google Scholar

  • [37] Fransz, H. G. & Gonzalez, S. R. (1991). Daily egg production of Temora longicornis (Copepoda, Calanoida) during winter and early spring in the Marsdiep (southern North Sea). Hydrobiol. Bull. 25(1), 61–64. http://dx.doi.org/10.1007/BF02259590CrossrefGoogle Scholar

  • [38] Fransz, H. G. Gonzalez, S. R., Cadée, G. C. & Hansen, F. C. (1992). Long-term change of Temora longicornis (Copepoda, Calanoida) abundance in a Dutch tidal inlet (Marsdiep) in relation to eutrophication. Nether. J. Sea Res. 30, 23–32. http://dx.doi.org/10.1016/0077-7579(92)90042-DCrossrefGoogle Scholar

  • [39] Fryd, M., Haslund, O. H. & Wohlgemuth, O. (1991). Development, growth and egg production of two copepod species Centropages hamatus and Centropages typicus in the laboratory. J. Plankton Res. 13, 683–689. http://dx.doi.org/10.1093/plankt/13.4.683CrossrefGoogle Scholar

  • [40] Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science 293, 2248–2251. http://dx.doi.org/10.1126/science.1061967CrossrefGoogle Scholar

  • [41] Guisande, C., Maneiro, I., Riveiro, I., Barreiro, A., & Pazos, Y. (2002). Estimation of copepod trophic niche in the field using amino acids and marker pigments. Mar. Ecol. Prog. Ser.239, 147–156. http://dx.doi.org/10.3354/meps239147CrossrefGoogle Scholar

  • [42] Hall, C. J. & Burns, C. W. (2002). Effects of temperature and salinity on the survival and egg production of Gladioferens pectinatus Brady (Copepoda: Calanoida). Estuar. Coast. Shelf Sci., 55: 557–564 http://dx.doi.org/10.1006/ecss.2001.0923CrossrefGoogle Scholar

  • [43] Halsband, C. & Hirche, H. J. (2001). Reproductive cycles of dominant calanoid copepods in the North Sea. Mar. Ecol. Prog. Ser. 209, 219–229. http://dx.doi.org/10.3354/meps209219CrossrefGoogle Scholar

  • [44] Halsband-Lenk, C., Carlotti, F. & Greve, W. (2004). Life-history strategies of calanoid congeners under two different climate regimes: a comparison. J. Mar. Sci. 61, 709–720. Google Scholar

  • [45] Harris, R. P. & Paffenhöfer, G. A. (1976). Feeding, growth and production of the marine planktonic copepod Temora longicornis Müller. J. Mar. Biol. Assoc.UK 56, 675–690. http://dx.doi.org/10.1017/S0025315400020725CrossrefGoogle Scholar

  • [46] Hernroth, L. (1985). Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. The Baltic Marine Biologists 10, 1–32. Google Scholar

  • [47] Hirche, H. J. (1992). Egg production of Eurytemora affinis — effect of k-strategy. Estaur. Coast.Shelf Sci., 35, 395–407. http://dx.doi.org/10.1016/S0272-7714(05)80035-6CrossrefGoogle Scholar

  • [48] Hirche, H. J., Meyer, U. & Niehoff, B. (1997). Egg production of Calanus finmarchicus - effect of food, temperature and season. Mar. Biol. 127, 609–620. http://dx.doi.org/10.1007/s002270050051CrossrefGoogle Scholar

  • [49] Hirst, A. G. & Bunker, A. J. (2003). Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol. Oceanogr. 48, 1988–2010. http://dx.doi.org/10.4319/lo.2003.48.5.1988CrossrefGoogle Scholar

  • [50] Holste, L. & John, M. A. St. (2009). The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Mar. Biol. 156, 527–540. http://dx.doi.org/10.1007/s00227-008-1101-1CrossrefGoogle Scholar

  • [51] Hopp, U., Maier, G. & Bleher, R. (1997) Reproduction and adult longevity of five species of planktonic cyclopoid copepods reared on different diets: a comparative study. Freshwater Biology 38, 289–300. http://dx.doi.org/10.1046/j.1365-2427.1997.00214.xCrossrefGoogle Scholar

  • [52] Ianora, A., Mazzocchi, M. G. & Grottoli, R. (1992). Seasonal fluctuations in fecundity and hatching success in the planktonic copepod Centropages typicus. J. Plankton Res. 14, 1483–1494. http://dx.doi.org/10.1093/plankt/14.11.1483CrossrefGoogle Scholar

  • [53] Kiørboe, T., Møhlenberg, F. & Hamburger, K., (1985). Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar. Ecol. Prog. Ser. 26(1–2), 85–97. http://dx.doi.org/10.3354/meps026085CrossrefGoogle Scholar

  • [54] Kiørboe, T. & Nielsen, T. G. (1994). Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol. Oceanogr. 39(3), 493–507. http://dx.doi.org/10.4319/lo.1994.39.3.0493CrossrefGoogle Scholar

  • [55] Klein Breteler, W. C. M., Fransz, H. G. & Gonzalez, S. R. (1982). Growth and development of four calanoid copepod species under experimental and natural conditions. Nether.J.Sea Res. 16, 195–207. http://dx.doi.org/10.1016/0077-7579(82)90030-8CrossrefGoogle Scholar

  • [56] Klein Breteler, W. C. M. & Gonzalez, S. R. (1986). Culture and development of Temora longicornis (Copepoda, Calanoida) at different conditions of temperature and food. Syllogeus 58, 71–85.. Google Scholar

  • [57] Klein Breteler, W. C. M. & Gonzalez, S. R. (1986). Culture and development of Temora longicornis (Copepoda, Calanoida) cultured at different temperature and food conditions. Mar. Ecol. Prog. Ser. 119, 99–110. http://dx.doi.org/10.3354/meps119099CrossrefGoogle Scholar

  • [58] Kleppel, G. S. (1993). On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 99, 183–195. http://dx.doi.org/10.3354/meps099183CrossrefGoogle Scholar

  • [59] Koski, M., Engstrom, J. & Viitasalo, M. (1999). Reproduction and survival of the calanoid copepod Eurytemora affinis fed with toxic and non-toxic cyanobacteria. Mar. Ecol. Prog. Ser. 186, 187–197. http://dx.doi.org/10.3354/meps186187CrossrefGoogle Scholar

  • [60] Koski, M., Dutz, J. & Klein Breteler, W. C. M. (2005). Selective grazing of Temora longicornis in different stages of a Phaeocystis globosa bloom — a mesocosm study. Harmful Algae 4, 915–927. http://dx.doi.org/10.1016/j.hal.2004.12.002CrossrefGoogle Scholar

  • [61] Kreibich, T., Saborowski, R., Hagen, W. et al., (2008). Short-term variation of nutritive and metabolic parameters in Temora longicornis females (Crustacea, Copepoda) as a response to diet shift and starvation. Helgoland Mar. Res. 62, 241–249. http://dx.doi.org/10.1007/s10152-008-0112-0CrossrefGoogle Scholar

  • [62] Kozlowsky-Suzuki, B., Carlsson, P., Rühl, A. & Granéli, E. (2006). Food selectivity and grazing impact on toxic Dinophysis spp. by copepods feeding on natural plankton assemblages. Harmful Algae 5, 57–88. http://dx.doi.org/10.1016/j.hal.2005.05.002CrossrefGoogle Scholar

  • [63] Landry, M. R. (1978). Population dynamics and production of a planktonic marine copepod, Acartia clause, in a small temperature lagoon on San Juan Island, Washington. Inter. Rev.ges. Hydrob.63, 77–119. CrossrefGoogle Scholar

  • [64] Last, J. M. (1980). The food of twenty species of fish larvae in the west-central North Sea. Fish. Res. Tech. Report, Lowestoft 60, 1–44. Google Scholar

  • [65] Lee, H. W., Ban, S., Ikeda, T. & Matsuishi, T. (2003). Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition. J. Plankton Res. 25(3), 261–271. http://dx.doi.org/10.1093/plankt/25.3.261CrossrefGoogle Scholar

  • [66] Makino, W. & Ban, S. (2000). Response of life history traits to food conditions in a cyclopoid copepod from an oligotrophic environment. Limnol. Oceanogr. 45, 396–407. http://dx.doi.org/10.4319/lo.2000.45.2.0396CrossrefGoogle Scholar

  • [67] Mauchline, J. (1998). The Biology of Calanoid Copepods. San Diego: Academic Press. Google Scholar

  • [68] McLaren, I. A. & Leonard, A. (1995). Assessing the equivalence of growth and egg production of copepods. ICES J. Mar. Sci. 52, 397–408. http://dx.doi.org/10.1016/1054-3139(95)80055-7CrossrefGoogle Scholar

  • [69] Maps, F., Runge, J. A., Zakardjian, B. & Joly, P. (2005). Egg production and hatching success of Temora longicornis (Copepoda, Calanoida) in the southern Gulf of St. Lawrence. Mar. Ecol.Prog. Ser. 285, 117–128. http://dx.doi.org/10.3354/meps285117CrossrefGoogle Scholar

  • [70] Marshall, S. M. & Orr, A. P. (1952). On the biology of Calanus finmarchicus. VII. Factors affecting egg production. J. Mar. Biol. Assoc.UK 30, 527–547. http://dx.doi.org/10.1017/S0025315400012959CrossrefGoogle Scholar

  • [71] Mudrak, S. (2004). Short- and long-term variability of zooplankton in coastal Baltic waters: using the Gulf of Gdańsk as an example. Unpublished doctoral dissertation, University of Gdańsk, Gdynia, Poland (in Polish). Google Scholar

  • [72] Mullin, M. M. & Brooks, E. R. (1970). The effect of concentration of food on body weight, cumulative ingestion, and rate of growth of the marine copepod Calanus helgolandicus. Limnol.Oceanogr. 15, 748–755. http://dx.doi.org/10.4319/lo.1970.15.5.0748CrossrefGoogle Scholar

  • [73] Parrish, K. K. & Wilson, D. F. (1978). Fecundity studies on Acartia tonsa (Copepods: Calanoidae) in standardized culture. Mar. Biol. 46, 65–81. http://dx.doi.org/10.1007/BF00393822CrossrefGoogle Scholar

  • [74] Peters, J. (2006). Lipids in key copepod species of the Baltic Sea and North Sea — implications for life cycles, trophodynamics and food quality. Published doctoral dissertation, University Bremen, Bremen. Google Scholar

  • [75] Peters, J., Dutz, J. & Hagen, W. (2007). Role of essential fatty acids on the reproductive success of the copepod Temora longicornis in the North Sea. Mar. Ecol. Prog. Ser. 341, 153–163. http://dx.doi.org/10.3354/meps341153CrossrefGoogle Scholar

  • [76] Peterson, W. T. (1985). Abundance, age structure and in situ egg production rates of the copepod Temora longicornis in Long Island Sound, New York. Bull. Mar. Sci. 37(2), 726–738. Google Scholar

  • [77] Peterson, W. T. & Bellantoni, D. C. (1987). Relationship between water column stratification, phytoplankton cell size and copepod fecundity in Long Island Sound and off Central Chile. In A.I.L. Payne, J.A. Gulland & K.H. Brink (Eds.), The Benguela and comparable ecosystems: South African (pp. 411–421). J. Mar. Sci. 5. Google Scholar

  • [78] Peterson, W. T., Tiselius, P. & Kiørboe, T. (1991). Copepod egg production, molting and growth rates, and secondary production, in the Skagerrak in August 1988. J. Plankton Res. 13, 131–154. http://dx.doi.org/10.1093/plankt/13.1.131CrossrefGoogle Scholar

  • [79] Peterson, W. T. & Kimmerer, W. J. (1994). Processes controlling recruitment of the marine calanoid copepod Temora longicornis in Long Island Sound: egg production, egg mortality, and cohort survival rates. Limnol. Oceanogr. 39(7), 1594–1605. http://dx.doi.org/10.4319/lo.1994.39.7.1594CrossrefGoogle Scholar

  • [80] Poli, J. M. & Castel, J. (1983). Cycle biologique en laboratoire d`un copépode planctonique de l`estuaire de la Gironde: Eurytemora hirundoides (Nordquist, 1888). Vie Milieu 33, 79–86. Google Scholar

  • [81] Razoul, S. (1975). Fécondite, maturité sexuelle et différenciation de l`appareil genital des femelles de deux copepods planctoniques: Centropages typicus et Temora stylifera. Pubbl. Stn. Zool. Napoli 39, 297–306. Google Scholar

  • [82] Sautour, B. & Castel, J. (1999). Grazing activity of mesoplanktonic copepods in a shallow bay during an algal spring bloom (Marennes-Oléron Bay, France). J. Mar. Biol Assoc. UK. 79, 73–84. http://dx.doi.org/10.1017/S0025315498000083CrossrefGoogle Scholar

  • [83] Sekiguchi, H., McLaren, I. A. & Corkett, C. J. (1980). Relationship between growth rate and egg production in the copepod Acartia clausi hudsonica. Mar. Biol. 58, 133–138. http://dx.doi.org/10.1007/BF00396124CrossrefGoogle Scholar

  • [84] Smith, S. L. & Lane, P. V. Z. (1985). Laboratory studies of the marine copepod Centropages typicus: egg production and development rates. Mar. Biol. 85, 153–162. http://dx.doi.org/10.1007/BF00397434CrossrefGoogle Scholar

  • [85] Wiktor, K. (1990). Zooplankton biomass in the coastal waters of Gdańsk Gulf. Oceanography12, 109–134 (in Polish). Google Scholar

  • [86] Van Rijswijk, P., Bakker, C. & Vink, M. (1989). Daily fecundity of Temora longicornis (Copepoda, Calanoida) in the Osterschelde estuary (SW Netherlands). Nether. J. Sea Res. 23, 293–303 http://dx.doi.org/10.1016/0077-7579(89)90050-1CrossrefGoogle Scholar

  • [87] Zismann, L., Berdugo, V. & Kimor, B. (1974). The food and feeding habits of early stages of grey mullets in the Haifa Bay region. Aquaculture 6, 59–75. http://dx.doi.org/10.1016/0044-8486(75)90089-7CrossrefGoogle Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 3, Pages 277–288, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0084-9.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mariusz Figiela, Maja Musialik-Koszarowska, Artur Nowicki, Anna Lemieszek, Marcin Kalarus, and Czesław Druet
Oceanological and Hydrobiological Studies, 2016, Volume 45, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in