Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 42, Issue 3


How lonely they are? A degree of isolation among macrozoobenthos species in the Marine Protected Area, the Bay of Puck, the Southern Baltic

Jan Węsławski / Lucyna Kryla-Straszewska
  • GIS Center of the University of Gdańsk, ul. Bażyńskiego 4, 80-952, Gdańsk, Poland
  • International Association of Oil and Gas Producers (OGP), 209-215 Blackfriars Road, SE1 8NL, London, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Warzocha / Jacek Urbański / Maria Włodarska-Kowalczuk / Lech Kotwicki
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/s13545-013-0085-8


Extensive sampling (450 grabs) was performed all over the inner part of Puck Bay (105 km2 area) in summers of 2007–2009. The GIS-based analysis of samples was performed to assess in detail the distribution of 32 benthic species. The minimum area of occurrence was less than 1 km2 for Lekanosphaera rugicauda and the maximum was 83 km2 for Cerastoderma glaucum. The material reveals that species with the pelagic larval stage were most widespread, with the least distance between individuals and the highest average density (e.g. Cerastoderma glaucum, Hydrobia ventrosa). The most isolated and the least dense species within the studied area were discretely mobile, non-larval crustaceans (e.g. Gammarus oceanicus and Lekanosphaera rugicauda), present at single sites with the largest distance from each other. We conclude that analysis of species distribution helps in understanding the threats to populations of marine invertebrates and marine spatial planning, through locating the isolated species and populations.

Keywords: Baltic; habitat mapping; benthos; Marine Protected Areas

  • [1] Agardy T. (2000). Information needs for marine protected areas: scientific and societal. Bull. Mar. Sci. 66, 875–888. Google Scholar

  • [2] Agardy T., Bridgewater P., Crosby M.P., Day J., Dayton P.K., Kenchington R., Laffoley D., McConney P., Murray P. A., Parks J.E. & Peau L. (2003). Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquatic Conserv: Mar. Freshw. Ecosyst. 13, 353–367. http://dx.doi.org/10.1002/aqc.583CrossrefGoogle Scholar

  • [3] Andrulewicz E., Otręba Z., Węsławski J.M. & Kamińska K. (2012). Disturbances of physical properties of marines pace related to large — scale technical installations. Implications for ecosystem-based management in the Baltic Sea. Marine Management, in press Google Scholar

  • [4] Baddeley R. & Turner R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software. 12, 1–42. Google Scholar

  • [5] Bell JJ. & Okamura B. (2005). Low genetic diversity in a marine nature reserve: reevaluating diversity criteria in reserve design. Proc. Royal Soc. B, 272, 1067–1074. http://dx.doi.org/10.1098/rspb.2005.3051CrossrefGoogle Scholar

  • [6] Boero F. & Bonsdorff E. (2007). A conceptual framework for marine biodiversity and ecosystem functioning. Marine Ecology. 28, 134–145. http://dx.doi.org/10.1111/j.1439-0485.2007.00171.xCrossrefGoogle Scholar

  • [7] Boersma de P. & Parrish J.K. (1999). Limiting abuse: marine protected areas, a limited solution. Ecological Economics. 31, 287–304. http://dx.doi.org/10.1016/S0921-8009(99)00085-3CrossrefGoogle Scholar

  • [8] Bologna P.A.X. & Heck, K.L. (2002). Impact of Habitat Edges on Density and Secondary Production of Seagrass-associated Fauna. Estuaries. 25(5), 1033–1044. http://dx.doi.org/10.1007/BF02691350CrossrefGoogle Scholar

  • [9] Bonsdorff E. (2006). Zoobenthos diversity gradients in the Baltic sea: Continuous post-glacial succession in a stressed ecosystem. Journal of Exp. Marine Biol. And Ecol. 330, 383–391. http://dx.doi.org/10.1016/j.jembe.2005.12.041CrossrefGoogle Scholar

  • [10] Bonsdorff E. & Pearson T. (1999). Variation in the sublittoral macrozoobenthos of the Baltic sea along environmental gradients: a functional group approach. Australian Journal of Ecology. 24, 312–326. http://dx.doi.org/10.1046/j.1442-9993.1999.00986.xCrossrefGoogle Scholar

  • [11] Bostrom C. & Bonsdorff E. (1997). Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research. 37, 153–166. http://dx.doi.org/10.1016/S1385-1101(96)00007-XCrossrefGoogle Scholar

  • [12] Brown J.H. (1984). On the relationship between abundance and distribution of species. The American Naturalist. 124, 255–279. http://dx.doi.org/10.1086/284267CrossrefGoogle Scholar

  • [13] Dulvy N.K., Sadovy Y. & Reynolds J.D. (2003). Extinction vulnerability in marine populations. Fish and Fisheries. 4, 25–64. http://dx.doi.org/10.1046/j.1467-2979.2003.00105.xCrossrefGoogle Scholar

  • [14] Dziubińska A. (2011). PhD dissertation, University of Gdansk, unpublished manuscript Google Scholar

  • [15] Elmgren, R. & C. Hill. (1997). Ecosystem function at low biodiversity — the Baltic example. In: Marine Biodiversity. Patterns and Processes. Ormond, R.F.G., Gage, J.D. and Angel, M.V. (eds). Cambridge University Press, Cambridge, 319–336. http://dx.doi.org/10.1017/CBO9780511752360.015CrossrefGoogle Scholar

  • [16] Gic Grusza G., Urbański J., Warzocha J. & Węsławski J.M. (2009). Atlas of marine seabed habitats of Polish Marine Areas. IOPAN, Sopot, 180 pp. Google Scholar

  • [17] Glockzin M. & Zettler M.L. (2008). Spatial macrozoobenthic distribution patterns in relation to major environmental factors — A case study from the Pomeranian Bay (southern Baltic Sea). Journal of Sea Research. 59, 144–161. http://dx.doi.org/10.1016/j.seares.2008.01.002Web of ScienceCrossrefGoogle Scholar

  • [18] Gray J.S. (2002). Species richness of marine soft sediments. Mar Ecol Prog Ser. 244, 285–297. http://dx.doi.org/10.3354/meps244285CrossrefGoogle Scholar

  • [19] Grzelak K. & Kuklinski P. (2010). Benthic assemblages associated with rocks in a brackish environment of the southernBaltic Sea. Journal of the Marine Biological Association of the United Kingdom. 90, 115–124. http://dx.doi.org/10.1017/S0025315409991378Web of ScienceCrossrefGoogle Scholar

  • [20] Healey D. & Hovel K.A. (2004). Seagrass bed patchiness: effects on epifaunal communities in San Diego Bay, USA. Journal of Experimental Marine Biology and Ecology. 313, 155–174. http://dx.doi.org/10.1016/j.jembe.2004.08.002CrossrefGoogle Scholar

  • [21] ICES (2011). Report of the Workshop on the Science for area-based management: Coastal and Marine Spatial Planning in practice (WKCMSP). 1–4 November 2010, Lisbon, Portugal. ICES CM 2011/SSGHIE:01. 25 pp Google Scholar

  • [22] Janas, U., Zarzycki, T. & Kozik, P. (2004). Palaemon elegans — a new component of the Gulf of Gdańsk macrofauna. Oceanologia. 46, 143–146. Google Scholar

  • [23] Jazdzewski K. (1973). Ecology of gammarids in the Bay of Puck. Oikos, suppl. 15: 121–126. Google Scholar

  • [24] Jeczmien W. & Szaniawska A. (2000). Quantitative studies on Gammarus Fabr. genus in Puck Bay (the Baltic Sea). Polskie Archiwum Hydrobiologii. 47(3–4), 561–568. Google Scholar

  • [25] Laine A.O. (2003). Distribution of soft-bottom macrofauna in the deep open Baltic Sea in relation to environmental variability. Estuarine, Coastal and Shelf Science. 57, 87–97. http://dx.doi.org/10.1016/S0272-7714(02)00333-5CrossrefGoogle Scholar

  • [26] Leeuwen van A., De Roos A.M. & Persson L.(2008). How cod shapes its world. Journal of Sea Research. 60, 89–104. http://dx.doi.org/10.1016/j.seares.2008.02.008Web of ScienceCrossrefGoogle Scholar

  • [27] Levitan D.R. (1991). Influence of body size and population density on fertilization success and reproductive output in a free spawning invertebrate. Biological Bull.(Woods Hole). 181, 261–268. http://dx.doi.org/10.2307/1542097CrossrefGoogle Scholar

  • [28] Mokievsky V.O. (2009). Marine protected areas: theoretical background for design and operation. Russian Journal of Marine Biology. 35, 504–514. http://dx.doi.org/10.1134/S1063074009060091Web of ScienceCrossrefGoogle Scholar

  • [29] Myers R.A., Barrowman N.J., Hutching J.A. & Rosenberg A.A. (1995). Population dynamics of exploited fish stocks at low population levels. Science. 52227, 1106–1108. http://dx.doi.org/10.1126/science.269.5227.1106CrossrefGoogle Scholar

  • [30] Norse E.A. & Crowder L.B. (2005). Marine Conservation Biology. Island Press; Washington, Covelo, London, 470 pp. Google Scholar

  • [31] Osowiecki A. (1998). Macrozoobenthos distribution in the coastal zone of the Gulf of Gdansk — autumn 1994 and summer 1995. Oceanological Studies. 27, 123–136. Google Scholar

  • [32] Petitgas, P. (1998). Biomass-dependent dynamics of fish spatial distributions characterized by geostatistical aggregation curves. ICES Journal of Marine Science. 55, 443–453. http://dx.doi.org/10.1006/jmsc.1997.0345CrossrefGoogle Scholar

  • [33] Pliński M. & Florczyk I. (1984). Changes in the phytobenthos resulting from the eutrophication of the Puck Bay. Limnologica (Berlin). 15, 325–327. Google Scholar

  • [34] Powles H., Bradford M.J., Bradford R.G., Doubleday W.G., Innes S. & Levings C.D. (2000). Assessing and protecting endangered marine species. ICES Journal of Marine Science. 57, 669–676. http://dx.doi.org/10.1006/jmsc.2000.0711CrossrefGoogle Scholar

  • [35] Robbins B.D. & Bell S.S. (1994). Seagrass landscapes: a terrestrial approach to the marine subtidal environment. Trends in Ecology and Evolution. 9, 301–304. http://dx.doi.org/10.1016/0169-5347(94)90041-8CrossrefGoogle Scholar

  • [36] Roberts D.A. & Poore A.G.B. (2005). Habitat configuration affects colonization of epifauna in a marine algal bed. Biological conservation. 127, 18–26. http://dx.doi.org/10.1016/j.biocon.2005.07.010CrossrefGoogle Scholar

  • [37] Skov H., Durinck J., Leopold M.F. & Tasker M.L. (2007). A quantitative method for evaluating the importance of marine areas for conservation of birds. Biological conservation. 136, 362–371. http://dx.doi.org/10.1016/j.biocon.2006.12.016CrossrefWeb of ScienceGoogle Scholar

  • [38] Smoła Z. (2012). MSc dissertation, University of Gdansk Google Scholar

  • [39] Sumaila U.R. (2002). Marine protected area performance in a model of the fishery. Natural Resource Modelling. 15, 439–451. http://dx.doi.org/10.1111/j.1939-7445.2002.tb00097.xCrossrefGoogle Scholar

  • [40] Szymelfenig M., Kotwicki L. & Graca B. (2006). Benthic recolonization in post dredging pits in the Puck Bay (Southern Baltic). Estuarine Coastal and Shelf Science. 68, 489–498. http://dx.doi.org/10.1016/j.ecss.2006.02.018CrossrefGoogle Scholar

  • [41] Tzvetkova, N. L. (1975). Coastal gammarids of the northern and Far Eastern seas of the USSR and adjacent waters. Genera Gammarus, Marinogammarus, Anisogammarus, Mesogammarus (Amphipoda, Gammaridae). Nauka, Leningrad (in Russian). Google Scholar

  • [42] Virnstein R.W. & Curran M.C. (1986). Colonisation of artificial seagrass versus time and distance from source. Marine Ecol. Progress Ser. 29, 279–288. http://dx.doi.org/10.3354/meps029279CrossrefGoogle Scholar

  • [43] Warzocha J. (1995). Classification and structure of of macrofaunal communities in the souhern Baltic. Arch. Fish. Mar. Res. 42, 225–237. Google Scholar

  • [44] Weslawski J.M., Urbanski J., Kryla-Straszewska L., Andrulewicz E., Linkowski T., Kuzebski E., Meissner W, Otremba Z & Piwowarczyk J. (2010). The different uses of sea space in Polish Marine Areas: is conflict inevitable? Oceanologia. 52, 513–530. http://dx.doi.org/10.5697/oc.52-3.513CrossrefWeb of ScienceGoogle Scholar

  • [45] Weslawski J.M., Warzocha J., Wiktor J., Urbanski J., Radtke K., Kryla L., Tatarek A., Kotwicki L. & Piwowarczyk J. (2009). Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone). Oceanologia. 51, 415–435. http://dx.doi.org/10.5697/oc.51-3.415CrossrefWeb of ScienceGoogle Scholar

  • [46] Wlodarska-Kowalczuk M., Weslawski J.M., Warzocha J. & Janas U. (2010). Habitat loss and possible effects on local species richness in a speciespoor system — a case study of southern Baltic. Biodivers Conserv. 19, 3991–4002. http://dx.doi.org/10.1007/s10531-010-9942-6Web of ScienceCrossrefGoogle Scholar

  • [47] Worm B., Lotze H.K. & Sommer U. (2001). Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia. 128, 281–293. http://dx.doi.org/10.1007/s004420100648CrossrefGoogle Scholar

  • [48] Zschokke S., Dolt C., Rusterholz H., Oggier C., Braschler B., Thommen G.H., Ludin E., Erhardt A. & Baur B. (2000). Short term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia. 125, 559–572. http://dx.doi.org/10.1007/s004420000483CrossrefGoogle Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 3, Pages 289–295, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0085-8.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rafal Lasota, Katarzyna Gierszewska, Frédérique Viard, Maciej Wolowicz, Katarzyna Dobrzyn, and Thierry Comtet
Marine Pollution Bulletin, 2018, Volume 126, Page 363

Comments (0)

Please log in or register to comment.
Log in