Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 42, Issue 3

Issues

Food spectrum of the omnivorous rotifer Asplanchna priodonta in two large northeastern European lakes of different trophy

Katarina Oganjan / Taavi Virro / Velda Lauringson
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/s13545-013-0088-5

Abstract

In this paper we examine the stomach contents of the omnivorous rotifer, Asplanchna priodonta, to evaluate possible trophic interactions between this rotifer and its potential prey in two large northeastern European lakes: moderately eutrophic Lake Peipsi and strongly eutrophic Lake Võrtsjärv. Our results show that the A. priodonta diet consisted of Bacillariophyta, Chlorophyta, Cyanobacteria, and Dinoflagellata. Ciliata were detected on rare occasion. Bacillariophyta were the most frequent food items in stomachs. There were no between-lake differences in the consumption of Chlorophyta and Cyanobacteria, whereas Bacillariophyta were consumed more in Lake Peipsi. However, neither Dinoflagellata nor Ciliata were found in stomach samples in Lake Võrtsjärv. We conclude that A. priodonta is an opportunistic feeder that is capable of influencing the phytoplankton community structure in large lakes.

Keywords: diet; feeding; lake trophic state; omnivory; rotifer; stomach contents

  • [1] Agasild H., Zingel P., Tõnno I., Haberman J. & Nõges T. (2007). Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia).. Hydrobiologia, 584, 167–177. http://dx.doi.org/10.1007/s10750-007-0575-zCrossrefGoogle Scholar

  • [2] Brandl Z. (2005). Freshwater copepods and rotifers: predators and their prey. Hydrobiologia, 546(1), 475–489. http://dx.doi.org/10.1007/s10750-005-4290-3CrossrefGoogle Scholar

  • [3] Chang K.-H., Doi H., Nishibe Y. & Nakano S.-I. (2010). Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. Journal of Limnology, 69, 209–216. http://dx.doi.org/10.4081/jlimnol.2010.209CrossrefGoogle Scholar

  • [4] Dorn N.J. & Wojdak J.M. (2004). The role of omnivorous crayfish in littoral communities. Oecologia, 140, 150–159. http://dx.doi.org/10.1007/s00442-004-1548-9CrossrefGoogle Scholar

  • [5] Dumont H.J. (1977). Biotic factors in the population dynamics of rotifers. Archiv für Hydrobiologie — Beiheft Ergebnisse der Limnologie, 8, 98–122. Google Scholar

  • [6] Ghadouani A., Pinel-Alloul B., Zhang Y., Prepas E.E. (1998). Relationships between zooplankton community structure and phytoplankton in two lime-treated eutrophic hardwater lakes. Freshwater Biology 39, 775–790. http://dx.doi.org/10.1046/j.1365-2427.1998.00318.xCrossrefGoogle Scholar

  • [7] Gilbert J.J. & Williamson C.E. (1978). Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna girodi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia 37, 13–22. http://dx.doi.org/10.1007/BF00349987CrossrefGoogle Scholar

  • [8] Gilbert J.J. (1980). Observations on the susceptibility of some protists and rotifers to predation by Asplanchna girodi. Hydrobiologia, 73, 87–91. http://dx.doi.org/10.1007/BF00019431CrossrefGoogle Scholar

  • [9] Gilbert J.J. (1985). Competition between Rotifers and Daphnia. Ecology, 66, 1943–1950. http://dx.doi.org/10.2307/2937390CrossrefGoogle Scholar

  • [10] Gilbert J.J. & Jack J.D. (1993). Rotifers as predators on small ciliates. Hydrobiologia, 255/256, 247–253. http://dx.doi.org/10.1007/BF00025845CrossrefGoogle Scholar

  • [11] Guiset A. (1977). Stomach contents in Asplanchna and Ploesoma. Archiv für Hydrobiologie — Beiheft Ergebnisse der Limnologie, 8, 126–129. Google Scholar

  • [12] Haberman J. (1997). A comparative study of zooplankton in two large lakes of Estonia. Proceedings of the Estonian Academy of Sciences: Biology, Ecology, 46, 225–245. Google Scholar

  • [13] Haberman J. (1998). Zooplankton of Lake Vortsjarv. Limnologica, 28, 49–65. Google Scholar

  • [14] Haberman J., Jaani A., Kangur A., Kangur K., Laugaste R., Milius A., Mäemets H. & Pihu E. (2000). Lake Peipsi and its ecosystem. Proceedings of the Estonian academy of Science: Biology, Ecology, 49, 3–18. Google Scholar

  • [15] Haberman J. (2001). Zooplankton in Lake Peipsi: Fauna and Flora (Pihu E., Haberman J., eds).. Sulemees Publishers, Tartu, 50–62 Google Scholar

  • [16] Haberman J. & Laugaste R. (2003). On characteristics reflecting the trophic state of large and shallow Estonian lakes (L. Peipsi, L. Võrtsjäv).. Hydrobiologia, 506, 737–744. http://dx.doi.org/10.1023/B:HYDR.0000008572.77431.1bCrossrefGoogle Scholar

  • [17] Hampton S. E., & Gilbert, J. J. (2001). Observations of insect predation on rotifers. Hydrobiologia, 446(1), 115–121. http://dx.doi.org/10.1023/A:1017543121353CrossrefGoogle Scholar

  • [18] Hansson L.A., Gustafsson S., Rengefors K., Bomark L. (2007). Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biology, 52, 1290–1301. http://dx.doi.org/10.1111/j.1365-2427.2007.01765.xCrossrefGoogle Scholar

  • [19] Hessen D. & Nilssen J. (1985). Factors controlling rotifer abundances in a norwegian eutrophic lake: an experimental study. Annales de Limnologie — International Journal of Limnology, 21, 97–105. http://dx.doi.org/10.1051/limn/1985017CrossrefGoogle Scholar

  • [20] Hofmann W. (1983). Interactions between Asplanchna and Keratella cochlearis in the Plußsee (north Germany).. Hydrobiologia 104, 363–365. http://dx.doi.org/10.1007/BF00045992CrossrefGoogle Scholar

  • [21] Hyslop E. (1980). Stomach contents analysis — a review of methods and their application. Journal of Fish Biology, 17, 411–429. http://dx.doi.org/10.1111/j.1095-8649.1980.tb02775.xCrossrefGoogle Scholar

  • [22] José de Paggi S. (2002). Family Asplanchnidae Eckstein, 1883. In: Rotifera. Vol. 6: Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia (Eds T. Nogrady & H. Segers), pp. 1–27. Guides to the identification of the microinvertebrates of the continental waters of the world 18. Backhuys Publishers, Leiden. Google Scholar

  • [23] Kangur K., Milius A., Mols T., Laugaste R. & Haberman J. (2002). Lake Peipsi: Changes in nutrient elements and plankton communities in the last decade. Aquatic Ecosystem Health and Management, 5, 363–377. http://dx.doi.org/10.1080/14634980290001913CrossrefGoogle Scholar

  • [24] Kappes H., Mechenich C. & Sinsch U. (2000). Long-term dynamics of Asplanchna priodonta in Lake Windsborn with comments on the diet. Hydrobiologia, 432, 91–100. http://dx.doi.org/10.1023/A:1004022020346CrossrefGoogle Scholar

  • [25] Kneitel J.M. (2007). Intermediate-consumer identity and resources alter a food web with omnivory. Journal of Animal Ecology, 76, 651–659. http://dx.doi.org/10.1111/j.1365-2656.2007.01250.xCrossrefGoogle Scholar

  • [26] Kutikova L.A. (1970). Rotifers of the fauna of the USSR. Nauka, Leningrad. (in Russian). Google Scholar

  • [27] Laugaste R., Nõges P., Nõges T., Yastremskij V.V., Milius A., Ott I. (2001). Algae in Lake Peipsi: Flora and Fauna (Pihu, E., Haberman, J., eds). Sulemees Publishers, Tartu, 31–49. Google Scholar

  • [28] Laugaste R. & Haberman J. (2005). Seasonality of zoo- and phytoplankton in Lake Peipsi (Estonia) as a function of water temperature. Proceedings of the Estonian Academy of Sciences: Biology, Ecology, 54, 18–39. Google Scholar

  • [29] Laugaste R., Nõges T., Tõnno I. (2008). Algae in Lake Peipsi (Haberman J., Timm, T., Raukas A., eds.). Eesti Loodusfoto, Tartu, 251 — 270. Google Scholar

  • [30] Lima-Junior S. & Goitein R. (2001). A new method for the analysis of fish stomach contents. Acta Scientiarum Maring, 23, 421–424. Google Scholar

  • [31] Mayer J., Dokulil M.T., Salbrechter M., Berger M., Posch T., Pfister G., Kirschner A.K.T., Velimirov B., Steitz A. & Ulbricht T. (1997). Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia, 342, 165–175. http://dx.doi.org/10.1023/A:1017098131238CrossrefGoogle Scholar

  • [32] Milovskaya L.V. & Bonk T.V. (2004). State of pelagic zooplankton community in the lake Kurilskoye during fertilization and post fertilization periods (1980–2000). Research of water biological resources of Kamchatka and of the northwest part of Pacific Ocean. Selected Papers, Petorpavlovsk-Kamchatski: KamchatNIRO, 7, 94–102. Google Scholar

  • [33] Nandini S., Rao T.R. (1998). Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium Microcystis aeruginosa as food. Aquatic Ecology, 31, 283–298. http://dx.doi.org/10.1023/A:1009940127959CrossrefGoogle Scholar

  • [34] Nandini S. (2000). Responses of rotifers and cladocerans to Microcystis aeruginosa (Cyanophyceae): A demographic study. Aquatic Ecology, 34, 227–242. http://dx.doi.org/10.1023/A:1009986928706CrossrefGoogle Scholar

  • [35] Nogrady T., Wallace R.L. & Snell T.W. (1993). Rotifera. Vol. 1: Biology, ecology and systematics. Guides to the identification of the microinvertebrates of the continental waters of the world 4. SPB Academic Publishing bv, The Hague. Google Scholar

  • [36] Nõges T., Kisand V., Nõges P., Põllumäe A., Tuvikene L. & Zingel P. (1998). Plankton seasonal dynamics and its controlling factors in shallow polymictic eutrophic lake Võrtsjärv, Estonia. International Review of Hydrobiology, 83, 279–296. http://dx.doi.org/10.1002/iroh.19980830404CrossrefGoogle Scholar

  • [37] Nõges T., Järvet A., Kisand A., Laugaste R., Loigu E., Skakalski B. & Nõges P. (2007). Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading. Hydrobiologia, 584, 253–264. http://dx.doi.org/10.1007/s10750-007-0603-zCrossrefGoogle Scholar

  • [38] Pociecha A. & Wilk-Wozniak E. (2008). Comments on the diet of Asplanchna priodonta (Gosse, 1850) in the Dobczycki dam reservoir on the basis of field sample observations. Oceanological and Hydrobiological Studies, 37, 63–69. http://dx.doi.org/10.2478/v10009-008-0004-2CrossrefGoogle Scholar

  • [39] Polis G.A. & Strong D.R. (1996). Food web complexity and community dynamics. American Naturalist, 147, 813–816. http://dx.doi.org/10.1086/285880CrossrefGoogle Scholar

  • [40] Pourriot R. (1977). Food and feeding habits of Rotifera. Archiv für Hydrobiologie — Beiheft Ergebnisse der Limnologie, 8, 243–260. Google Scholar

  • [41] Robertson J. R. & Salt G. W. (1981). Responses in growth mortality, and reproduction to variable food levels by the rotifer, Asplanchna girodi. Ecology, 62, 1585–1596. http://dx.doi.org/10.2307/1941514CrossrefGoogle Scholar

  • [42] Salt G.W. (1977). An analysis of the diets of five sympatric species of Asplanchna. Archiv für Hydrobiologie — Beiheft Ergebnisse der Limnologie, 8, 123–125. Google Scholar

  • [43] Salt G. W., Sabbadini, G. F. & Commins, M. L. (1978). Trophi morphology relative to food habits in six species of rotifers (Asplanchnidae). Transactions of the American Microscopical Society, 469–485. CrossrefGoogle Scholar

  • [44] Soroki Y. I., & Paveljeva E. B. (1972). On the quantitative characteristics of the pelagic ecosystem of Dalnee Lake (Kamchatka).. Hydrobiologia, 40(4)., 519–552. http://dx.doi.org/10.1007/BF00019987CrossrefGoogle Scholar

  • [45] Stemberger R. S. & Gilbert J. J. (1985). Assessment of threshold food levels and population growth in planktonic rotifers. Archiv für Hydrobiologie — Beiheft Ergebnisse der Limnologie, 21, 269–275. Google Scholar

  • [46] Starkweather P.L. (1980). Aspects of the feeding behavior and trophic ecology of suspension-feeding rotifers. Hydrobiologia, 73(1), 63–72. http://dx.doi.org/10.1007/BF00019427CrossrefGoogle Scholar

  • [47] Tardiff S.E. & Stanford J.A. (1998). Grizzly bear digging: Effects on subalpine meadow plants in relation to mineral nitrogen availability. Ecology, 79, 2219–2228. http://dx.doi.org/10.1890/0012-9658(1998)079[2219:GBDEOS]2.0.CO;2CrossrefGoogle Scholar

  • [48] Virro T., Haberman J., Haldna M. & Blank K. (2009). Diversity and structure of the winter rotifer assemblage in a shallow eutrophic northern temperate Lake Võrtsjärv. Aquatic Ecology, 43, 755–764. http://dx.doi.org/10.1007/s10452-009-9276-1CrossrefGoogle Scholar

  • [49] Williamson C.E. (1983). Invertebrate predation on planktonic rotifers. Hydrobiologia, 104, 385–396. http://dx.doi.org/10.1007/BF00045996CrossrefGoogle Scholar

  • [50] Xie P. (2001). Gut contents of bighead carp (Aristichthys nobilis) and the processing and digestion of algal cells in the alimentary canal. Aquaculture, 195, 149–161. http://dx.doi.org/10.1016/S0044-8486(00)00549-4CrossrefGoogle Scholar

  • [51] Zingel P. & Haberman J. (2008). A comparison of zooplankton densities and biomass in Lakes Peipsi and Võrtsjärv (Estonia): Rotifers and crustaceans versus ciliates. Hydrobiologia, 599, 153–159. http://dx.doi.org/10.1007/s10750-007-9186-yCrossrefGoogle Scholar

  • [52] Zurek R. (2007). The basic paths of energy flow and matter transformations in a lowland dam reservoir ecosystem. Oceanological and Hydrobiological Studies, 36, 5–147. Google Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 3, Pages 314–323, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0088-5.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. Andersson, J. Ahlinder, P. Mathisen, M. Hägglund, S. Bäckman, E. Nilsson, A. Sjödin, and J. Thelaus
Scientific Reports, 2018, Volume 8, Number 1
[2]
WEN Zhanming, GU Yangliang, LIN Qiuqi, and HAN Boping
Journal of Lake Sciences, 2017, Volume 29, Number 2, Page 458

Comments (0)

Please log in or register to comment.
Log in