Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 42, Issue 3

Issues

Distribution and abundance of microflora in sandy beaches on the southern coast of the Baltic Sea

Zbigniew Mudryk / Piotr Perliński / Piotr Skórczewski / Milena Wielgat / Marta Zdanowicz
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/s13545-013-0089-4

Abstract

The abundance of actinomycetes, filamentous fungi and yeasts in the marine epipsammon habitat and their spatial distribution were studied with conventional plating techniques in two marine beaches (Ustka and Czołpino, southern Baltic Sea) which are characterized by different anthropic pressure levels. Actinomycetes constituted the predominant group of studied microorganisms, while the least numerous were yeasts in the sand of both studied beaches. On both of the beaches researched in this study, the amounts of accumulated actinomycetales, fungi and yeasts were similar. When analyzing the distribution of the microflora along the horizontal beach profiles we found significant differences. In the sand collected along the profile perpendicular to the shoreline in Ustka and Czołpino beaches, the highest numbers of actinomycetes, filamentous fungi and yeasts were noted in the samples from the dune and the lowest in those from the subtidal zone and waterline. Generally, higher numbers of studied microorganisms were observed in the surface than in the subsurface sand layer. The occurrence of actinomycetes, filamentous fungi and yeasts showed considerable seasonal variation.

Keywords: actinomycetes; filamentous fungi; yeasts; abundance; sandy beach; southern Baltic Sea

  • [1] Anderson, J.H. (1979). In vitro survival of human pathogenic fungi in Hawaiian beach sand. Medical Mycology, 17, 13–22. http://dx.doi.org/10.1080/00362177985380031CrossrefGoogle Scholar

  • [2] Arvanitidou, M. Kanellou, K. Katsouyannopoulos V. & Tsakris A. (2002). Occurrence and densities of fungi from northern Greek coastal bathing waters and their relation with faecal pollution indicators. Water Research, 36, 5127–5131. http://dx.doi.org/10.1016/S0043-1354(02)00235-XCrossrefGoogle Scholar

  • [3] Baltz, R.H. (2008). Renaissance in antibacterial discovery from actinomycetes. Current Opinion in Pharmacology, 8, 1 — 7. Google Scholar

  • [4] Beena, K.R. Arun, A.B. Raviraja N.S. & Sridhar K.R. (2001). Association of arbuscular mycorrhizal fungi with plants of coastal sand dunes of west coast of India. Tropical Ecology, 42, 213–222. Google Scholar

  • [5] Bredholt, H. & Fjaervik E. (2008). Actinomycetes from sediments in the Trondheim Fjord, Norway: Diversity and biological activity. Marine Drugs, 6, 12–24. http://dx.doi.org/10.3390/md6010012CrossrefGoogle Scholar

  • [6] Brown, A.C. & McLachlan A. (1990). Ecology of sandy shores. Amsterdam, Elsevier, 328 p. Google Scholar

  • [7] Burkowska, A. & Donderski W. (2007). Impact of humic substances on bakterioplankton in eutrophic lake. Polish Journal of Ecology, 55, 155–160. Google Scholar

  • [8] Carillo-Munoz, A.J. Torres-Rodriguez, J.M. Madrenys-Brunet N. & Dronda-Ayza A. (1990). Comparative study on the survival of 5 species of dermatophytes and Scopulariopsis in beach sand under laboratory conditions. Revista Iberoamericana de Microbiologia. 7, 36–38. Google Scholar

  • [9] Cordoba, A.S. Mendonca, M.M. Stuermer S.L. & Rygiewicz P.T. (2001). Diversity of arbuscular mycorrhizal fungi along a sand dune stabilization gradient: A case study at Praia da Joaquina, Ilha de Santa Catarina, South Brazil. Mycoscience, 42, 379–387. http://dx.doi.org/10.1007/BF02461221CrossrefGoogle Scholar

  • [10] Deepika, L. & Kannabiran K. (2010). Isolation and characterization of antagonistic Actinomycetes from marine soil. Journal of Microbial & Biochemical Technology, 2, 001–006. DOI: 10.4172/1948 -5948.1000015 CrossrefGoogle Scholar

  • [11] Dunn, P.H. & Baker G.E. (1984). Filamentous fungal population of Hawaiian beaches. Pacific Science, 38, 232–248. Google Scholar

  • [12] Ghinsberg, R.C. BarDov, L. Rotol, M. Sheinberg U. & Nitzan Y. (1994). Monitoring of selected bacteria and fungi in sand and seawater along the Tel Aviv coast. Microbios. 77, 29–40. Google Scholar

  • [13] Gomes, D.N. Cavalcanti, M.A. Fernandes, M.J. Lima D.M. & Passavante J.Z. (2008). Filamentous fungi isolated from sand and water of “Bairro Novo” and “Casa Caiada” beaches, Olinda, Pernambuco, Brazil. Brazilian Journal of Biology, 68, 577–582. http://dx.doi.org/10.1590/S1519-69842008000300016CrossrefGoogle Scholar

  • [14] González, M.C. Hanlin, R.T. Herrera T. & Ulloa M. (2000). Fungi colonizing hair-baits from three costal beaches of Mexico. Mycoscience, 41, 259–262. http://dx.doi.org/10.1007/BF02489680CrossrefGoogle Scholar

  • [15] de Hoog, G.S. Guarro, J. Gene J. & Figures M.J. (2000). Atlas of clinical fungi. Second edition. Utrecht, Centraallbureau voor Schimmelcultures. 1126 p Google Scholar

  • [16] Hyde, K.D. & Lee S.Y. (1995). Ecology of mangrove fungi and their role in nutrient cycling. What gaps occur in our knowledge? Hydrobiologia, 295, 107–118. http://dx.doi.org/10.1007/BF00029117CrossrefGoogle Scholar

  • [17] Jędrzejczak, M.F. (1999). The degradation of stranded carrion on a Baltic Sea sandy beach. Oceanological Studies, 3, 109–141. Google Scholar

  • [18] Jensen, P.R. Gontand, E. Mafnas, Ch. Mincer T.J. & Fenical W. (2005). Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environmental Microbiology, 7, 1039–1048. http://dx.doi.org/10.1111/j.1462-2920.2005.00785.xCrossrefGoogle Scholar

  • [19] Jiang, Y. Wiese, J. Cao, Y.R. Xu, L.H. Imhoff J.F. & Jiang C.L., (2009). Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea. International Journal of Systematic and Evolutionary Microbiology, 59, 1599–1602. http://dx.doi.org/10.1099/ijs.0.006197-0CrossrefGoogle Scholar

  • [20] Jocz, J. (2010). Dynamic concentration of protein and chlorophyll in sand beaches of diffrent anthropoppessure. Master`s Thesis. Pomeranian University Słupsk 74 p (in Polish) Google Scholar

  • [21] Kingham, D.L. & Evans L.V. (1986). Pelvetia — Mycosphaerella interrelationship. In Moss, ST (Ed.) The Biology of Marine Fungi. Cambridge, Cambridge University Press. p 177–187. Google Scholar

  • [22] Kirk, P.W. & Gordon A.S. (1988). Hydrocarbon degradation by filamentous marine higher fungi. Mycologia, 80, 776–782. http://dx.doi.org/10.2307/3807554CrossrefGoogle Scholar

  • [23] Kohlmeyer, J. & Kohlmeyer E. (1979). Marine Mycology. The Higher Fungi. Academic Press, New York 690 p. Google Scholar

  • [24] Koop, K. & Griffiths C.L. (1982). The relative significance of bacteria, meio- and macrofauna on an exposed sandy beaches. Marine Biology, 66, 295–300. http://dx.doi.org/10.1007/BF00397035CrossrefGoogle Scholar

  • [25] Koop, K. Newell R.C. & Lucas M.I. (1982). Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore. Marine Ecology Progress Series, 9, 91–96. http://dx.doi.org/10.3354/meps009091CrossrefGoogle Scholar

  • [26] Koske, R.E. & Gemma J.N. (1990). VA mycorrhizae in strand vegetation of Hawaii: Evidence for long-disrance codispersal of plants and fungi. American Journal of Botany, 77, 466–474. http://dx.doi.org/10.2307/2444380CrossrefGoogle Scholar

  • [27] Koske, R.E. & Gemma J.N. (1996). Arbuscular mycorrhizal fungi in Hawaiian sand dunes: island of Kauai. Pacific Science, 50, 36–45. Google Scholar

  • [28] Kramarska, R. Uscinowicz, Sz. Zachowicz, J. Przezdziecki, P. Warzocha, J. Netzel J. & Janusz J. (2003). Identification of submarine deposit drifts to artificial swelling. Department of Marine in Słupsk (in Polish) Google Scholar

  • [29] Larrondo, J.V. & Calvo M.A. (1989). Fungi density in sands of the Mediterranean coast beaches. Mycopathologia, 108, 185–193. http://dx.doi.org/10.1007/BF00436224CrossrefGoogle Scholar

  • [30] Lee, S.D. (2006). Brevibacterium samyangense sp. nov., an actinomycete isolated from beach sediment. International Journal of Systematic and Evolutionary Microbiology, 56, 1889 — 1892. CrossrefGoogle Scholar

  • [31] Malm, T. Raberg, S. Fell S. & Carlsson P. (2004). Effects of beach cast cleaning on beach quality, microbial food web and littoral macrofaunal biodiversity. Estuarine Coastal Shelf Science, 60, 339–347. http://dx.doi.org/10.1016/j.ecss.2004.01.008CrossrefGoogle Scholar

  • [32] McLachlan, A. & Jaramillio E. (1995). Zonation on sandy beach. Oceanography and Marine Biology Annual Review, 33, 305–335. Google Scholar

  • [33] Mendes, B. Urbano, P. Alves, C. Morais, J. Lapa N. & Oliveira J.S. (1998). Fungi as environmental microbiological indicators. Water Science Technology, 38, 155–162. CrossrefGoogle Scholar

  • [34] Migahed, F.F. (2003). Distribution of fungi in the sandy soil of Egyptian beach. Mycobiology, 31, 61–67. http://dx.doi.org/10.4489/MYCO.2003.31.2.061CrossrefGoogle Scholar

  • [35] Mohankumar, V. Ragupathy, S. Nirmala C.B. & Mahadevan A. (1988). Distribution of vesicular arbuscular mycorrhizae (VAM) in the sandy beach soils of madras coast. Current Science, 57, 367–368. Google Scholar

  • [36] Moore-Landecker, E. (1996). Fundamentals of the fungi, 4th ed. New Jersey: Prentice-Hall 574 p. Google Scholar

  • [37] Morais, P.B. Resende, M.A. Rosa C.A. & Barbosa F.A.R. (1996). Occurrence and diel distribution of yeasts in a paleo-karstic lake of southern Brazilian Revive Microbiology, 27, 182–188. Google Scholar

  • [38] Morrison-Gardiner, S. (2002). Dominant fungi from Australian coral reefs. Fungal Diversity, 9, 105 — 121. Google Scholar

  • [39] Mudryk, Z. Podgórska B. & Ameryk A. (2001). Bacteriological characterization of a Baltic sandy beach in summer. Ecohydrology and Hydrobiology, 4, 503–509. Google Scholar

  • [40] Mudryk, Z. & Podgórska B. (2007), Abundance and distribution of culturable microorganisms in sandy beaches in south Baltic Sea. Polish Journal of Ecology, 55, 221–231. Google Scholar

  • [41] Ogunmwonyi, I.H. Mazomba, N. Mabinya, L. Ngwenya, E. Green, E. Akinpelu, D.A. Olaniran, A.O. Bernard K. & Okoh A.I. (2010). Studies on the culturable marine actinomycetes isolated from the Nahoon beach in the Eastern Cape Province of South Africa. African Journal of Microbiology Research, 4, 2223–2230. Google Scholar

  • [42] Olańczuk-Neyman, K. & Jankowska K. (1998). Bacteriological investigations of the sandy beach ecosystem in Sopot. Oceanologia, 40, 137–151. Google Scholar

  • [43] Ouhdouch, Y. Barakate M. & Finance C. (2001). Actinomycetes of Moroccan habitats: Isolation and screening for antifungal activities. European Journal of Soil Biology, 37, 69–74. http://dx.doi.org/10.1016/S1164-5563(01)01069-XCrossrefGoogle Scholar

  • [44] Papadakis, J.A. Mavridou, A. Richardson, S.C. Lampiri M. & Marcelou U. (1997). Bather — related microbial and yeast populations in sand and seawater. Water Research, 31, 799–804. http://dx.doi.org/10.1016/S0043-1354(96)00377-6CrossrefGoogle Scholar

  • [45] Prasannarai, K. & Sridhar K.R. (2001). Diversity and abundance of higher marine fungi on woody substrates along the west coast of India. Current Science, 81, 304–311. Google Scholar

  • [46] Remya, M. & Vijayakumar R. (2008). Isolation and characterization of marine antagonistic actinomycetes from west coast of India. Medicine and Biology, 15, 13–19. Google Scholar

  • [47] Salvo, V.S. & Fabiano M. (2007). Mycological assessment of sediments in Ligurian beaches in the Northwestern Mediterranean: Pathogens and opportunistic pathogens. Journal of Environmental Management, 83, 365–369. http://dx.doi.org/10.1016/j.jenvman.2006.04.001CrossrefGoogle Scholar

  • [48] Sarquis, M.I.M & de Oliveira P.C. (1996). Diversity of microfungi in the sandy soil of Ipanema Beach, Rio de Janeiro, Brazil. Journal of Basic Microbiology, 36, 51–58. http://dx.doi.org/10.1002/jobm.3620360111CrossrefGoogle Scholar

  • [49] Sato, M.I.Z. Bari, M.D. Lamparelli, C.C. Truzzi, A.C. Coelho M.C.L.S. & Hachich E.M. (2005). Sanitary quality of sands from marine recreational beaches of São Paulo, Brazil. Brazilian Journal of Microbiology, 36, 321–326. http://dx.doi.org/10.1590/S1517-83822005000400003CrossrefGoogle Scholar

  • [50] Schlacher, T.A. Schoelan, D.S. Dugan, J. Lastra, M. Jones, A. Scapini F. & McLachlan A. (2008). Sandy beach ecosystems: Key feature, sampling issues, management challenges and climate change impacts. Marine Ecology, 29, 70–90. http://dx.doi.org/10.1111/j.1439-0485.2007.00204.xCrossrefGoogle Scholar

  • [51] Seo, J.P. & Lee S.D. (2006). Nocardia harenae sp. nov., an actinomycete isolated from beach sand. International Journal of Systematic and Evolutionary Microbiology, 56, 2203–2207. http://dx.doi.org/10.1099/ijs.0.64187-0CrossrefGoogle Scholar

  • [52] Sharma, S.L. & Pant A. (2001). Crude oil degradation by a marine actinomycete Rhodococcus sp., Indian Journal of Marine Science, 30, 146–150. Google Scholar

  • [53] Suthindhiran, K. & Kannabiran K. (2009). Hemolytic activity of Streptomyces VITSDK1 spp. isolated from marine sediments in southern India. Journal of Medical Mycology, 19, 77–86. http://dx.doi.org/10.1016/j.mycmed.2009.01.001CrossrefGoogle Scholar

  • [54] Suzuki, K. Nagai, K. Shimizu Y. & Suzuki Y. (1994). Search for Actinomycetes in screening for new bioactive compounds. Actinomycetologica, 8, 122–127. http://dx.doi.org/10.3209/saj.8_122CrossrefGoogle Scholar

  • [55] Tadych, M. & Blaszkowski J. (2000). Arbuscular fungi and mycorrhizae (Glomales) of Slowinski National Park, Poland. Mycotaxon, 74, 463–482. Google Scholar

  • [56] Uraban-Malinga, B. & Opaliński K.W. (2001). Interstitial community oxygen consumption in a Baltic sandy beaches: horizontal zonation. Oceanology, 43, 455 — 468. Google Scholar

  • [57] Vezzulli, L. Zotti, M. Marin, V. Moreno, M. Pezzati E. & Fabiano M. (2008). Swash zone interstitial water is reservoir of fungal microorganisms on Mediterranean beach (Genoa City, Italy). JMBA Biodiversity Records, 2, 1–3. Google Scholar

  • [58] Vieira, R.H.S.F. Rodrigues, D.P. Menezes, E.A. Evangelista, N.S.S. Reis, E.M.F. Barreto L.M. & Gonçalves F.A. (2001). Microbial contamination of sand from major beaches in Fortaleza Ceará State, Brazil. Brazilian Journal of Microbiology, 32, 77–80. http://dx.doi.org/10.1590/S1517-83822001000200001CrossrefGoogle Scholar

  • [59] Vijayakumar, R. Muthukumar, C. Trajudin, N. Panneerselavan R. & Vsaravanamuthu R. (2007). Studies on the diversity of actinomycetes in the Palk Strait region of Bay of Bengal, India. Actinomycetologica, 21, 59 — 65. CrossrefGoogle Scholar

  • [60] Vimal, V. Rajan M.B. & Kannabiran K. (2009). Antimicrobial activity of marine Actinomycete, Nocardiopsis sp. VITSVK 5(FJ973467). Asian Journal of Medical Sciences, 1, 57–63. Google Scholar

  • [61] Vogel, C. Rogerson, A. Schatz, S. Laubach, H. Tallman A. & Fell J. (2007). Prevalence of yeasts in beach sand at three bathing beaches in South Florida. Water Research, 41, 1915–1920. http://dx.doi.org/10.1016/j.watres.2007.02.010CrossrefGoogle Scholar

  • [62] Watanabe, T. Watanabe Y. & Nakamura K. (2003). Myrothecium dimorphum, sp. nov., a soil fungi from beach sand in the Bonin (Ogasawara) Islands, Japan. Mycoscience, 44, 283–286. http://dx.doi.org/10.1007/S10267-003-0112-5CrossrefGoogle Scholar

  • [63] Zaitlin, B. Turkington, K. Parkinson D. & Clayton G. (2004). Effects of tillage and inorganic fertilizers on culturable soil actinomycete communities and inhibion of fungi by specific actinomycetes. Applied Soil Ecology, 26, 53–62. http://dx.doi.org/10.1016/j.apsoil.2003.10.004CrossrefGoogle Scholar

  • [64] Zakaria, L. Yee, T.L. Zakaria M. & Salleh B. (2011). Diversity of microfungi in sandy beach soil of Teluk Aling, Pulau Pinang. Tropical Life Sciences Research, 22, 87–97. Google Scholar

  • [65] Zawadzka, E. (1996). Litho — morphodynamics in the vicinity of small ports of the Polish Central Coast. (In:) Taussik J, Mitchel J. (eds) Partnership of the Coastal Management, Samara Publ. Limited, Cardigan GB. Google Scholar

  • [66] Zawadzka-Kahlau, E. (1999). Trends in South Baltic coast development during the last hundred years. Peribalticum, 7, 115–136. Google Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 3, Pages 324–331, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0089-4.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
YingWu Shi, Chun Li, HongMei Yang, Tao Zhang, Yan Gao, Jun Zeng, Qing Lin, Outikuer Mahemuti, YuGuo Li, Xiangdong Huo, and Kai Lou
European Journal of Soil Biology, 2016, Volume 77, Page 77

Comments (0)

Please log in or register to comment.
Log in