Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 42, Issue 3

Issues

Hydroid Gonothyraea loveni found on the straightnose pipefish (Nerophis ophidion) in the Gulf of Gdańsk — symbiosis, parasitism or biofouling?

Anna Dziubińska
  • Department of Experimental Ecology of Marine Organisms Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariusz Sapota
  • Department of Marine Biology and Ecology Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-03 | DOI: https://doi.org/10.2478/s13545-013-0090-y

Abstract

Straightnose pipefish (Nerophis ophidion), covered with hydroid Gonothyraea loveni, were caught in August 2010 near Gdynia while fishing with fyke nets. The hydroid colonies were spaced around the fish, from the head to the anus. These colonies seemed to cause serious problems with the balance and swimming ability of the fish. It appears that there are no symbiotic or parasitic relationships between the hydroid and the fish. The fish was probably just another substrate for G. loveni and became colonized by fouling on the skin surface. It should also be taken into consideration that hydroid colonies can move from place to place with their fish host. It is possible that the hydroid benefits from the fish active search for planktonic food.

Keywords: Gonothyraea loveni; Nerophis ophidion; Baltic Sea; biofouling

  • [1] Aliani, S. & Molcard A. (2003). Hitch-hiking on floating marine debris: macrobenthic species in the Western Mediterranean Sea. Hydrobiologia, 503, 59–67. DOI:10.1023/B:HYDR.0000008480.95045.26. http://dx.doi.org/10.1023/B:HYDR.0000008480.95045.26CrossrefGoogle Scholar

  • [2] Costello, D.P. & Henley C. (1971). Methods for obtaining and handling marine eggs and embryos. Woods Hole, MA: Marine Biological Laboratory. http://dx.doi.org/10.1575/1912/295CrossrefGoogle Scholar

  • [3] Demel, K. (1962). Syngnathidae. In M. Gąsowska (Ed.), Klucze do oznaczania kręgowców Polski. Cyclostomi et Pisces, (pp. 153–156). Warszawa: PWN (in Polish). Google Scholar

  • [4] Demel, K. (1967). Nasz Bałtyk. Warszawa: Wiedza Powszechna, (in Polish). Google Scholar

  • [5] Dziubińska, A. & Janas, U. (2007). Submerged objects — a nice place to live and develop. Succession of fouling communities in the Gulf of Gdańsk, Southern Baltic. Oceanol. Hydrobiol. St., 36, 65–78. DOI:10.2478/v10009-007-0026-1. CrossrefGoogle Scholar

  • [6] Hayward, P.J. & Ryland J.S. (1996). Handbook of the Marine Fauna of North-West Europe. Oxford: Oxford University Press. Google Scholar

  • [7] Kosevich, I.A. (2006). Branching in colonial hydroids. In J. Davies (Ed.) Molecular Biology Intelligence Unit. Branching morphogenesis (pp. 91–107). Edinburg, Scotland, UK: Eurekah.com and Springer Science+Business Media, Inc. Google Scholar

  • [8] Margoński, P. (1994). Some aspects of straight-nosed (Nerophis ophidion L.) and broad-nosed (Syngnathus typhle L.) pipefish biology in the Gulf of Gdańsk. Zesz. Nauk. UG Oceanografia. 13, 39–59 (in Polish). Google Scholar

  • [9] Puce, S., Cerrano, C., Di Camillo C.G. & Bavestrello G. (2008). Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation. J. Mar. Biol. Assoc. UK. 88(8), 1715–1721. DOI:10.1017/S0025315408002233. http://dx.doi.org/10.1017/S0025315408002233CrossrefGoogle Scholar

  • [10] Slobodov, S.A. & Marfenin N.N. (2005). The features of reproduction of Obelia spp. in the White Sea. Oceanology, 45(1), 69–75. Google Scholar

  • [11] Theede, H., Scholz N. & Fischer H. (1979). Temperature and salinity effects on the acute toxicity of cadmium to Laomedea loveni (Hydrozoa). Mar. Ecol. Prog. Ser. 1, 13–19. http://dx.doi.org/10.3354/meps001013CrossrefGoogle Scholar

  • [12] Vervoort, W. (1946). Hydrozoa (C 1) A. Hydropoliepen, Aflevering 14. Fauna van Nederland (in German). Google Scholar

  • [13] Vincent, A.C.J., Berglund A. & Ahnesjo I. (1995). Reproductive ecology of five pipefish species in one eelgrass meadow. Environ. Biol. Fish. 44, 347–361. DOI:10.1007/BF00008250. http://dx.doi.org/10.1007/BF00008250CrossrefGoogle Scholar

  • [14] Żmudziński, L. (1974). Zwierzęcy świat Bałtyku. Warszawa: Wydawnictwa Szkolne i Pedagogiczne (in Polish). Google Scholar

About the article

Published Online: 2013-10-03

Published in Print: 2013-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 3, Pages 332–335, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0090-y.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Matteo Monti, Aurora Giorgi, and Julie B. Olson
Coral Reefs, 2018

Comments (0)

Please log in or register to comment.
Log in