Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 42, Issue 4

Issues

Cyanobacteria and cyanotoxins in Polish freshwater bodies

Justyna Kobos
  • Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of Microorganisms, University of Gdańsk, Faculty of Oceanography and Geography, al. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agata Błaszczyk
  • Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of Microorganisms, University of Gdańsk, Faculty of Oceanography and Geography, al. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Hohlfeld
  • Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of Microorganisms, University of Gdańsk, Faculty of Oceanography and Geography, al. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Toruńska-Sitarz
  • Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of Microorganisms, University of Gdańsk, Faculty of Oceanography and Geography, al. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Krakowiak
  • Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of Microorganisms, University of Gdańsk, Faculty of Oceanography and Geography, al. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Hebel
  • Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of Microorganisms, University of Gdańsk, Faculty of Oceanography and Geography, al. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Sutryk
  • Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of Microorganisms, University of Gdańsk, Faculty of Oceanography and Geography, al. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Grabowska / Magdalena Toporowska / Mikołaj Kokociński
  • Faculty of Biology, Department of Hydrobiology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beata Messyasz
  • Faculty of Biology, Department of Hydrobiology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Rybak
  • Faculty of Biology, Department of Hydrobiology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Napiórkowska-Krzebietke / Lidia Nawrocka
  • The State School of Higher Professional Education in Elbląg, Institute of Technology, ul. Wojska Polskiego 1, 82-300, Elbląg, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra Pełechata
  • Faculty of Biology, Department of Hydrobiology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Budzyńska
  • Faculty of Biology, Department of Hydrobiology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Zagajewski
  • Faculty of Biology, Department of Hydrobiology, A. Mickiewicz University, ul. Umultowska 89, 61-614, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hanna Mazur-Marzec
  • Department of Marine Biology and Ecology, Laboratory of Biochemical Ecology of Microorganisms, University of Gdańsk, Faculty of Oceanography and Geography, al. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-23 | DOI: https://doi.org/10.2478/s13545-013-0093-8

Abstract

In this work, the authors examined the presence of cyanobacteria and cyanotoxins in 21 samples collected from fresh water bodies located in 5 provinces in Poland: Lublin (2), Podlasie (1), Pomerania (6), Warmia-Masuria (1) and Wielkopolska (11). In addition, to determine the general pattern of geographical distribution, frequency of cyanobacteria occurrence, and cyanotoxins production, the published data from 238 fresh water bodies in Poland were reviewed. On the basis of these collected results, we concluded that Planktothrix, Aphanizomenon, Microcystis and Dolichospermum were dominant. The general pattern in geographical distribution of the identified cyanobacterial genera was typical of other eutrophic waters in Europe. The production of cyanotoxins was revealed in 18 (86%) of the 21 samples analyzed in the present work and in 74 (75%) of the 98 total water bodies for which the presence of toxins had been examined. Among the 24 detected microcystin variants, [Asp3]MC-RR was most common. These results can be verified when more data from the less explored water bodies in the southern and eastern parts of Poland are available.

Keywords: cyanobacterial blooms; cyanotoxins; freshwater cyanobacteria

  • [1] Al-Tebrineh, J., Mihali T.K., Pomati F. & Neilan B.A. (2010). Detection of saxitoxin-producing cyanobacteria and Anab aena circinalis in environmental water blooms by quantitative PCR. Appl. Environ. Microbiol, 76, 7836–7842. DOI: 10.1128/AEM.00174-10 CrossrefGoogle Scholar

  • [2] Alikas, K., Kangro K., Reinart A. (2010). Detecting cyanobacterial blooms in large North European lakes using the Maximum Chlorophyll Index. Oceanologia 52(2), 237–257. DOI: 10.5697/oc.52-2.237. CrossrefGoogle Scholar

  • [3] Aráoz, E., Mologó J., & de Marsac N.T. (2010). Neurotoxic cyanobacterial toxins. Toxicon 56, 813–828. DOI: 1016/j.toxicon.2009.07.036. Google Scholar

  • [4] Ballot, A., Fastner J., Lentz M. & Wiedner C. (2010). First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 56(6), 964–971. DOI: 1016/j.toxicon.2010.06.021. Google Scholar

  • [5] Błaszczyk, A. (2011). Cyanobacterial neurotoxins in the environment of the Baltic Sea and the lakes of Pomerania Province, Unpublished doctoral dissertation, University of Gdańsk, Gdynia, Poland. (in Polish with Engl. summ.). Google Scholar

  • [6] Bober, B., Lechowski Z. & Bialczyk J. (2011). Determination of some cyanopeptides synthesized by Woronichinia naegeliana (Chroococcales, Cyanophyceae). Phycol. Res, 59, 286–294. DOI: 10.1111/j.1440-1835.2011.00628.x. CrossrefGoogle Scholar

  • [7] Bucka, H. & Żurek R. (1992). Trophic relations between phyto- and zooplankton in a field experiment in the aspect of the formation and decline of water blooms. Acta Hydrobiol., 34, 139–155. YADDA: bwmeta1.element.agro-article-180bebdf-c43a-4e1f-8994-ea04e54261c1. Google Scholar

  • [8] Bucka, H. & Wilk-Woźniak E. (1999). Cyanobacteria responsible for planktic water blooms in reservoirs in southern Poland. Algological Studies 94, 105–113. Google Scholar

  • [9] Bucka, H. & Wilk-Woźniak E. (2005a). A contribution to the knowledge of some potentially toxic cyanobacteria species forming blooms in water bodies — chosen examples. Oceanol. Hydrobiol. Stud, 34(3): 43–53. YADDA: bwmeta1.element.agro-article-fbc54748-7909-408a-a2eb-35e8f66eb8b6. Google Scholar

  • [10] Bucka, H. & Wilk-Woźniak E. (2005b). Ecological aspects of selected principial phytoplankton taxa in Lake Piaseczno. Oceanol. Hydrobiol. Stud, 34(2), 79–94. YADDA: bwmeta1.element.baztech-article-BUS5-0012-0031. Google Scholar

  • [11] Burchardt, L. (1998). The response of Aphanizomenon flos-aquae (L.) Ralfs to changes of environmental conditions. Oceanol. Stud, 1, 9–14. YADDA: bwmeta1.element.baztech-article-BUS8-0025-0018. Google Scholar

  • [12] Burchardt, L., Messyasz B. & Stępniak A. (2006). Diversity of phytoplankton community in Borusa and Grundela ponds. Teka Kom. Ochr. Kszt. Środ. Przyr., 3, 35–40. YADDA: bwmeta1.element.agro-525f0d10-d219-44d8-a8ca-9549a562932c. Google Scholar

  • [13] Burchardt, L., Marshall H. G., Kokociński M. & Owsianny P. M. (2007). Blooms of Aphanizomenon flos-aquae associated with historical trophic changes occurring in Lake Świętokrzyskie, Poland. Oceanol. Hydrobiol. Stud., 46(Suppl. 1), 261–266. YADDA: bwmeta1.element.agro-article-4552a2d4-ceb6-4dcf-ab8b-6b1649d81290. Google Scholar

  • [14] Budzyńska, A., Gołdyn R., Zagajewski P., Dondajewska R. & Kowalewska-Madura K. (2009). The dynamics of a Planktothrix agardhii population in a shallow dimictic lake. Oceanol. Hydrobiol. Stud, 38(2), 7–12. Google Scholar

  • [15] Cadel-Six, S., Peyraud-Thomas C., Brient L., Tandeau de Marsac N., Rippka R. & Méjean A. (2007). Different genotypes of anatoxin-producing cyanobacteria co-exist in the Tarn River, France. Appl. Environ. Microbiol, 73(23), 7605–7614. DOI: 10.1128/AEM.01225-07. CrossrefGoogle Scholar

  • [16] Carey, C.C., Haney J.F. & Cottingham K.L. (2007). First report of microcystin-LR in the cyanobacterium Gloeotrichia echinulata. Environ Toxicol, 22(3),337–9. DOI: 1002/tox.20245. Google Scholar

  • [17] Celewicz, S., Messyasz B. & Burchardt L. (2001). Struktura zbiorowisk fitoplanktonu w strefie szuwaru i pelagialu w Jeziorze Budzynskim. Rocz. AR Pozn. CCCXXXIV, Bot, 4, 3–11 (in Polish with Engl. summ.). YADDA: bwmeta1.element.agro-article-217ce7bf-e47a-4c67-ad92-7d21f6697fd7. Google Scholar

  • [18] Cerasino, L. & Salmaso N. (2012). Diversity and distribution of cyanobacterial toxins in the Italian subalpine lacustrine district. Oceanol.Hydrobiol. St, 41(3), 54–63. DOI: 10.2478/s13545-012-0028-9. CrossrefGoogle Scholar

  • [19] Celewicz-Gołdyn, S. (2005). Pelagic phytoplankton in four basins of the Rosnowskie Duże Lake in the Wielkopolska National Park. Rocz. AR Pozn. CCCLXXII, Bot.-Stec, 8, 11–25. YADDA: bwmeta1.element.agro-article-202e0614-0682-4eb4-af55-be589629759f. Google Scholar

  • [20] Celewicz-Gołdyn, S. (2006). Phycoflora in the basin of the Rosnowskie Duże lake exposed to anthropopressure. Rocz. AR Pozn. CCCLXXVIII, Bot.-Stec, 10, 23–35. http://www.up.poznan.pl/steciana/wp-content/uploads/2013/05/10Celewi2.pdf Google Scholar

  • [21] Christiansen, G., Fastner J., Erhard M., Börner T. & Dittmann E. (2003). Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J. Bacteriol, 185, 564–572. DOI: 1128/JB.185.2.564-572.2003. Google Scholar

  • [22] Cox, P.A., Banack S.A., Murch S.J., Rasmussen U., Tien G., Bidigare R.R., Metcalf J.S., Morrison L.F., Codd G.A. & Bergman B. (2005). Diverse taxa of cyanobacteria produce BMAA, a neurotoxic amino acid. Proc. Natl. Acad. Sci, (USA) 102, 5074–5078. DOI: 10.1073_pnas.0501526102. Google Scholar

  • [23] Cronberg, G., Annadotter H. & Lawton L.A. (1999). The occurrence of toxic blue-green algae in Lake Ringsjon, southern Sweden, despite nutrient reduction and fish biomanipulation. Hydrobiologia 404,123–129. DOI: 10.1023/A:1003780731471. CrossrefGoogle Scholar

  • [24] Czerwik-Marcinkowska, J. & Uher B. (2011). Cyanophytes on limestone rocks in the Szopczański Gorge (Pieniny Mountains) — their ecomorphology and ultrastructure. Acta Soc. Bot. Pol, 80(3), 205–209. DOI: 5586/asbp.2011.013. Google Scholar

  • [25] Dittmann, E., Fewer D.P. & Neilan B.A. (2012). Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol. Rev, 37, 23–43. DOI: 1111/1574-6976.12000. Google Scholar

  • [26] Domingos, P., Rubim T. K., Molica R. J. R., Azevedo S. M. F. O. & Carmichael W. W. (1999). First report of microcystin production by picoplanktonic cyanobacteria isolated from a northeast Brazilian drinking water supply. Environ. Toxicol, 14, 31–35. DOI: 10.1002/(SICI)1522-7278(199902). CrossrefGoogle Scholar

  • [27] Edler, L. (1979). Phytoplankton and chlorophyll: recommendations on methods for marine biological studies in the Baltic Sea. Baltic Marine Biologists Publication 5, 1–38. Google Scholar

  • [28] Falconer, I. R. (2005). Cyanobacterial toxins of drinking water supplies, CRC Press, London. Google Scholar

  • [29] Fastner, J., Neumann U., Wirsing B., Weckesser J., Wiedner C., Nixdorf B. & Chorus I. (1999). Microcystins (Hepatotoxic heptapeptides) in German fresh water bodies. Environ. Toxicol, 14, 13–22. DOI: 1002/(SICI)1522-7278(199902)14. Google Scholar

  • [30] Fastner, J., Rücker J., Stüker A., Preußel K., Nixdof B., Chorus I., Köhler A. & Wiedner C. (2007). Occurence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ. Toxicol, 22, 26–32. DOI: 1002/tox.20230. Google Scholar

  • [31] Ferriera, F. M. B., Soler J. M. F., Fidalgo M. L. & Fernandez-Vila P. (2001). PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-Lever reservoir (Douro river, northern Portugal). Toxicon 39, 737–761. DOI: 10.1016/S0041-0101(00)00114-8. CrossrefGoogle Scholar

  • [32] De Figueiredo, D.R., Alves A., Pereira M.J. & Correia A. (2010). Molecular characterization of bloomforming Aphanizomenon strains isolated from Vela Lake (Western Central Portugal). J. Plankton Res, 32(2), 239–252. DOI: 10.1093/plankt/fbp111. CrossrefGoogle Scholar

  • [33] Fiore, M. F., Genuario D. B., da Silva C. S. P., Shishido T. K., Moraes L. A. B., Neto R. C. & Silva-Stenico M. E. (2009). Microcystin production by a freshwater spring cyanobacterium of the genus Fischerella. Toxicon, 53, 754–761. DOI: 1016/j.toxicon.2009.02.010. Google Scholar

  • [34] Galicka, W., Lesiak T. & Rakowska B. (1998). Dynamics of blue-green algae development in Sulejów Dam Reservoir. Oceanol. Stud, 1, 21–26. Google Scholar

  • [35] Gąbka, M., Owsianny P.M. & Sobczyński T. (2004). Acidic lakes in the Wielkopolska region — physico-chemical properties of water, bottom sediments and the aquatic micro- and macrovegetation. Limnol. Rev, 4, 81–88. http://www.ptlim.pl/lr2004/pdf/gabka.pdf Google Scholar

  • [36] Gągała I., Izydorczyk K., Skowron A., Kamecka-Plaskota D., Stefaniak K., Kokociński M., Mankiewicz-Boczek J. (2010). Appearance of toxigenic cyanobacteria in two Polish lakes dominatem by Microcystis aeruginosa and Planktothrix agardhii and environmental factors influence. Ecohydrol. Hydrobiol, 10(1), 25–34. DOI: 10.2478/v10104-009-0045-5. CrossrefGoogle Scholar

  • [37] Głowacka, J., Szefel-Markowska M., Waleron M., Łojkowska E. & Waleron K. (2011). Detection and identyfication of potentially toxic cyanobacteria in Polish water bodies. Acta Biochim. Pol, 58(3), 321–333. http://www.actabp.pl/pdf/3_2011/321.pdf Google Scholar

  • [38] Gołdyn, R. & Messyasz B. (2008). Stan jakości wód i możliwości rekultywacji Jeziora Durowskiego, Monograph University of im. Adama Mickiewicza in Poznań, pp. 48 (in Polish) Google Scholar

  • [39] Górniak, A., Zieliński P., Jekatierynczuk-Rudczyk E., Grabowska M. & Suchowolec T. (2002). The role of dissolved organic carbon in the shallow lowland reservoir ecosystem. Acta Hydroch. Hydrob, 30, 179–189. http://onlinelibrary.wiley.com/doi/10.1002/aheh.200390001/pdf CrossrefGoogle Scholar

  • [40] Górniak, A., Zieliński P., Jekatierynczuk-Rudczyk E., Grabowska M., Suchowolec T. & Smakulska J. (2006). Results of biomanipulation of a humic reservoir after four years of study. Verh. Internat. Verein Limnol, 29, 2059–2062. http://www.ibiologia.unam.mx/pdf/directorio/z/restauracion/biomanipulation/biomanipulation.pdf Google Scholar

  • [41] Grabowska, M. (1998). Blooms of Cyanophyta in Siemianówka Dam Reservoir in the first years after filling. Oceanol. Stud, 1, 27–31. Google Scholar

  • [42] Grabowska, M. (2005). Cyanoprokaryota blooms in the polyhumic Siemianówka Dam Reservoir in 1992–2003. Oceanol. Hydrobiol. Stud, 34(1), 73–85. http://biol-chem.uwb.edu.pl/IP/POL/BIOLOGIA/pdf/grabowska2005.pdf Google Scholar

  • [43] Grabowska, M. (2012). The role of a eutrophic lowland reservoir in shaping the composition of river phytoplankton. Ecohydrol. Hydrobiol, 12(3), 231–242. DOI: 10.2478/v10104-012-0016-0. CrossrefGoogle Scholar

  • [44] Grabowska, M., Górniak A., Jekatierynczuk-Rudczyk E. & Zieliński P. (2003). The influence of hydrology and water quality on phytoplankton community composition and biomass in a humoeutrophic reservoir, Siemianówka reservoir (Poland). Int. J. Ecohydrol. Hydrobiol, 3(2), 185–196. YADDA: bwmeta1.element.agro-article-9c7c30a7-8994-4938-b5b1-2f4f8fcdd0e2. Google Scholar

  • [45] Grabowska, M., Konecka U. & Górniak A. (2006). Summer phytoplankton of lakes in Suwałki Landscape Park. Polish J. Environ. Study, 15(5d), 553–556. http://biol-chem.uwb.edu.pl/IP/POL/BIOLOGIA/pdf/zieletal2006.pdf Google Scholar

  • [46] Grabowska, M. & Pawlik-Skowrońska B. (2008). Replacement of Chroococcales and Nostocales by Oscillatoriales caused a significant increase in microcystin concentrations in a dam reservoir. Oceanol. Hydrobiol. Stud., 37(4), 23–33. YADDA: bwmeta1.element.baztech-article-BUS5-0015-0025. Google Scholar

  • [47] Grabowska, M. & Mazur-Marzec H. (2011). The effect of cyanobacterial blooms in the Siemianówka Dam Reservoir on the phytoplankton structure in the Narew River. Oceanol. Hydrobiol. Stud., 40(1), 19–26. DOI: 10.2478/s13545-011-0003-x. CrossrefGoogle Scholar

  • [48] Grabowska, M., Górniak A. & Krawczuk M. (2013). Summer phytoplankton in selected lakes of the East Suwałki Lakeland in relation to the chemical water parameters. Limnol. Rev, 13(1), 21–29. Google Scholar

  • [49] Hesse, K. & Kohl J.G. (2001). Effects of light and nutrient supply on growth and microcystin content of different strains of Microcystis aeruginosa. In I. Chorus (Ed.) Cyanotoxins. Occurrence, causes, consequences (pp. 104–115). Springer, Berlin. Google Scholar

  • [50] Hoffmann, L. (1999). Marine cyanobacteria in tropical regions: diversity and ecology. Eur. J. Phycol, 34, 371–379. CrossrefGoogle Scholar

  • [51] Izydorczyk, K., Tarczyńska M., Jurczak T., Mrowczyński J. & Zalewski M. (2005). Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Environ. Toxicol, 20, 425–430. DOI: 1002/tox.20128. Google Scholar

  • [52] Izydorczyk, K., Jurczak T., Wojtal-Frankiewicz A., Skowron A., Mankiewicz-Boczek J. & Tarczyńska M. (2008). Influence of abiotic and biotic factors on microcystin content in Microcystis aeruginosa cells in a eutrophic temperate reservoir. J. Plankton Res, 30(4), 393–400. DOI: 10.1093/plankt/fbn006. CrossrefGoogle Scholar

  • [53] Jacobsen, B.A. (1994). Bloom formation of Gloeotrichia echinulata and Aphanizomenon flos-aquae in a shallow, eutrophic, Danish lake. Hydrobiologia 289, 193–197. DOI: 10.1007/BF00007420. CrossrefGoogle Scholar

  • [54] Jacquet, S., Briand J.F., Leboulanger C., Avois-Jacquet C., Oberhaus L., Tassin B., Vinçon-Leite B., Paolini G., Druart J.D., Anneville O. & Humbert J.H. (2005). The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4: 651–642. DOI: 1016/j.hal.2003.12.006. Google Scholar

  • [55] Jekatierynczuk-Rudczyk, E., Grabowska M., Ejsmont-Karabin J. & Karpowicz M. (2012). Assessment of trophic state of four lakes in the Suwałki Landscape Park (NE Poland) based on the summer phyto- and zooplankton in comparison with some physicochemical parameters. In K. Wołowski, I. Kaczmarska, J. Ehrman & A. Z. Wojtal (Eds.) Phycological Reports: Current advances in algal taxonomy and its applications: phylogenetic, ecological and applied perspective, (pp. 205–225). Instytut Botaniki im. W. Szafera, Kraków. Google Scholar

  • [56] Jonasson, S., Eriksson J., Berntzon L., Spácil Z., Ilag LL., Ronnevi LO., Rasmussen U. & Bergman B. (2010). Transfer of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc. Natl. Acad. Sci, (USA) 107(20) 9252–9257. DOI: 10.1073/pnas.0914417107. CrossrefGoogle Scholar

  • [57] Jurczak, T., Tarczyńska M., Karlsson K. & Meriluoto J. (2004). Characterization and Diversity of Cyanobacterial Hepatotoxins (Microcystins) in Blooms from Polish Freshwaters Identified by Liquid Chromatography-Electrospray Ionisation Mass Spectrometry. Chromatographia, 59(9–10), 571–578. DOI: 10.1365/s10337-004-0279-8. CrossrefGoogle Scholar

  • [58] Jurczak, T., Tarczyńska M., Izydorczyk K., Mankiewicz J., Zalewski M. & Meriluoto J. (2005). Elimination of microcystins by water treatment processes — examples from Sulejow Reservoir, Poland. Water Res, 39, 2395–2406. DOI: 10.1016/j.watres.2005.04.031. CrossrefGoogle Scholar

  • [59] Kabziński, A. K. M., Juszczak R. Miękoś E., Tarczyńska M., Sivonen K. & Rapala J. (2000). The first report about the presence of cyanobacterial toxins in Polish lakes. Polish J. Environ. Stud, 9(3), 171–178. http://www.pjoes.com/pdf/9.3/171-178.pdf Google Scholar

  • [60] Kalinowska, R., Pawlik-Skowronska B. & Skowronski T. (2012). Hazardous change in the species composition of cyanobacterial assemblage in the autrophic dam reservoir in Lublin (E. Poland). 31st International Conference of the Polish Phycological Society. Olsztyn, 17-20th May, p. 44. Google Scholar

  • [61] Kardinaal, W. E. A. (2007). Who’s bad? Molecular identification reveals seasonal dynamics of toxic and non-toxic freshwater cyanobacteria, Universiteit Amsterdam, Instituut Biodiversiteit en Ecosysteemdynamica (IBED). ISBN 978-90-76894-78-2. Google Scholar

  • [62] Karlsson-Elfgren, I., Hyenstrand P. & Riydin E. (2005). Pelagic growth and colony division of Gloeotrichia echinulata in Lake Erken. J. Plankton. Res, 27(2), 145–151. DOI: 10.1093/plankt/fbh165. CrossrefGoogle Scholar

  • [63] Kobos, J., Mazur-Marzec H., Dittmer M., Witek B. & Pliński M. (2005). Toxic cyanobacterial blooms in the Kociewskie Lasek (Northern Poland). Oceanol. Hydrobiol. Stud, 34(Suppl. 3), 77–84. Google Scholar

  • [64] Kobos, J. (2007). Characterisctics of toxic and potentially toxic cyanobacteria occurring in the Gulf of Gdańsk and selected lakes from the Radunia River drainage, Unpublished doctoral dissertation, University of Gdańsk, Gdynia, Poland. (in Polish with Engl. summ.). Google Scholar

  • [65] Kokociński, M., Dziga D., Spoof L., Stefaniak K., Jurczak T., Mankiewicz-Boczek J. & Meriluoto J. (2009). First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere, 74, 669–675. DOI: 1016/j.chemosphere.2008.10.027. Google Scholar

  • [66] Kokociński, M., Stefaniak K., Mankiewicz-Boczek J., Izydorczyk K. & Soininen J. (2010). The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskiii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). Eur. J. Phycol, 45(4), 365–374. DOI: 1080/09670262.2010.492916. Google Scholar

  • [67] Kokociński, M. & Soininen J. (2012). Environmental factors related to the occurrence of Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) at the north-eastern limit of its geographical range. Eur. J. Phycol, 47(1), 12–21. DOI: 1080/09670262.2011.645216. Google Scholar

  • [68] Kokociński, M., Mankiewicz-Boczek J., Jurczak T., Spoof L., Meriluoto J., Rejmonczyk E., Hautala H., Vehniäinen M., Pawełczyk J. & Soininen J. (2013). Aphanizomenon gracile (Nostocales), a cylindrospermopsinproducing cyanobacterium in Polish lakes. Environ. Sci. Pollut. Res., DOI 10.1007/s11356-012-1426-7, published on line 02 February 2013. CrossrefGoogle Scholar

  • [69] Komárek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639: 245–259. DOI 10.1007/s10750-009-0031-3. CrossrefGoogle Scholar

  • [70] Komárek, J. & Anagnostidis K. (1999). Band 19/1. Cyanoprocaryota, 1. Teil: Chroococcales; Süβwasserflora von Mitteleuropa; Gustav Fisher Verlag Jena, Germany, pp. 548, ISBN 3-437-35408-6. Google Scholar

  • [71] Komárek, J. & Anagnostidis K. (2005) Band 19/2. Cyanoprocaryota, 2. Teil: Oscillatoriales; Süβwasserflora von Mitteleuropa; ELSEVIER, Italy, pp. 759, ISBN 3-8274-0919-5. Google Scholar

  • [72] Komárek, J. & Komárkova J. (2006). Diversity of Aphanizomenon-like cyanobacteria. Czech. Phycol. Olomouc, 6, 1–32. http://fottea.czechphycology.cz/_contents/CP6-2006-01.pdf Google Scholar

  • [73] Komarzewska, K. & Głogowska B. (2005). Blooming of Aphanizomenon flos-aquae in the urban pond. Oceanol. Hydrobiol. Stud., 34(3), 105–113. Google Scholar

  • [74] Kozak, A. (2005). Seasonal Changes Occurring Over Four Years in a Reservoir’s Phytoplankton Composition. Polish J. Environ. Stud, 14(4), 451–465 Google Scholar

  • [75] Kozak, A. (2006). Phytoplankton community structure in a dam reservoir in Poznań. Teka Kom. Ochr. Kszt. Środ. Przyr., 3, 76–80. http://www.pan-ol.lublin.pl/wydawnictwa/TOchr3/Kozak.pdf Google Scholar

  • [76] Krupa D. & Czernaś K. (2003a). Struktura i produktywność fitoplanktonu w zapadliskowym zbiorniku Nadrybie przy kopalni Bogdanka na Pojezierzu Łęczyńsko-Włodawskim. Acta Agrophysica, 1(1), 123–129 (in Polish). Google Scholar

  • [77] Krupa, D. & Czernaś K. (2003b). Mass appearance of cyanobacterium Planktothrix rubescens in lake Piaseczno, Poland. Water Qual. Res. J. Canada, 38(1), 141–145. http://www.ipgp.fr/~bensoussan/Biblio_M2/PDF_Plankto*/Krupa_Czernas_2003_WaterQualResJCanada_Mass_appearance_cyanobacterium_Prub_lake_Piaseczno.pdf Google Scholar

  • [78] Krupa, D. & Czernaś K. (2003c). Fitoplankton i jego produktywność w jeziorach Płotycze k. Urszulina i Wereszyńskim w otulinie Poleskiego Parku Narodowego. Acta Agrophysica 1(1), 131–138 (in Polish). Google Scholar

  • [79] Kuczyńska-Kipper, N., Messyasz B., Nagengast B. (2004). Charakterystyka hydrobiologiczna wód Jeziora Lubaskiego Dużego na tle badań wieloletnich (1999–2002). Rocz. AR Pozn. CCCLXIII, Bot, 7, 167–174 (in Polish). Google Scholar

  • [80] Kuiper-Goodman, T., Falconer I. & Fitzgerald J. (1999) Human health aspects. In I. Chorus & J. Bartram (Eds.), Toxic Cyanobacteria in Water, A Guide to Their Public Health Consequences, Monitoring and Management (pp. 125–160). Published by WHO, Spon Press, London. Google Scholar

  • [81] Kurmayer, R., Dittman E., Fastner J. & Chorus I. (2002). Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb. Ecol, 43, 107–118. DOI: 10.1007/s00248-001-0039-3. CrossrefGoogle Scholar

  • [82] Kurmayer, R. & Kutzenberger T. (2003). Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl. Environ. Microbiol., 69(11), 6723–6730. DOI: 1128/AEM.69.11.6723-6730.2003. Google Scholar

  • [83] Kurmayer, R., Schober E., Tonk L., Visser P.M. & Christiansen G. (2011). Spatial divergence in the proportions of the genes encoding toxic peptides synthesis among populations of the cyanobacterium Planktothrix in European lakes. FEMS Microbiol. Lett, 317, 127–137. DOI: 10.1111/j.1574-6968.2011.02222.x. CrossrefGoogle Scholar

  • [84] Lara, Y., Lambion A., Menzel D., Codd G.A. & Wilmotte A. (2013). A cultivation independent approach for the genetic and cyanotoxin characterization of colonial cyanobacteria. Aquat. Microb. Ecol, 69, 135–143. DOI: 10.3354/ame01628. CrossrefGoogle Scholar

  • [85] Lenard, T. (2009). Metalimnetic bloom of Planktothrix rubescens in relation to environment al conditions. Ocean. Hydrobiol. Stud., 38(Suppl. 2), 45–53. http://centrostudinatura.it/public2/documenti/821-96544.pdf Google Scholar

  • [86] Luścińska, M. & Witek B. (2007). Zbiorowiska glonów fitoplanktonowych. In D. Borowiak (Ed.) Jeziora Kaszubskiego Parku Krajobrazowego (pp. 165–179). Wyd. Gdańsk, Katedra Limnologii Uniwersytet Gdański (in Polish). Google Scholar

  • [87] Mankiewicz, J., Walter Z., Tarczynska M., Palyvoda O., Wojtysiak-Staniszczyk M. & Zalewski M. (2002). Genotoxicity of cyanobacterial extracts containing microcystins from Polish water reservoirs as determined by SOS chromotest and comet assay. Environ. Toxicol, 17, 341–350. DOI: 10.1002/tox.10061. CrossrefGoogle Scholar

  • [88] Mankiewicz, J., Komárková J., Izydorczyk K., Jurczak T., Tarczyńska M. & Zalewski M. (2005). Hepatotoxic cyanobacterial blooms in the lakes of Northern Poland. Environ. Toxicol, 20, 499–506. DOI: 1002/tox.20138. Google Scholar

  • [89] Mankiewicz-Boczek, J., Izydorczyk K., Romanowska-Duda Z., Jurczak T., Stefaniak K. & Kokociński M. (2006a). Detection and monitoring toxigenity of cyanobacteria by application of molecular methods. Environ. Toxicol, 21: 380–387. DOI: 1002/tox.20200. Google Scholar

  • [90] Mankiewicz-Boczek, J., Urbaniak M., Romanowska-Duda Z. & Izydorczyk K. (2006b). Toxic Cyanobacteria strains in lowland dam reservoir (Sulejow Res., Central Poland): amplification of mcy genes for detection and identification. Pol. J. Ecol, 54(2): 171–180. http://www.pol.j.ecol.cbe-pan.pl/article/ar54_2_01.pdf Google Scholar

  • [91] Mankiewicz-Boczek, J., Izydorczyk K. & Jurczak T. (2006c). Risk assessment of toxic Cyanobacteria in Polish water bodies. In A. G. Kungolos, C. A. Brebbia, C. P. Samaras & V. Popov (Eds.) Environmental Toxicology (pp. 49–58). WIT Transactions on Biomedicine and Health, Vol. 10. WITpress, Southampton, Boston. Google Scholar

  • [92] Mankiewicz-Boczek, J., Gagała I., Kokociński M., Jurczak T. & Stefaniak K. (2009). Perennial toxigenic Planktothrix agardhii bloom in selected lakes of Western Poland. Environ. Toxicol, 26(1), 10–20. DOI: 1002/tox.20524. Google Scholar

  • [93] Mankiewicz-Boczek, J., Palus J., Gągała I., Izydorczyk K., Jurczak T., Dziubałtowska E., Stępnik M., Arkusz J., Komorowska M., Skowron A. & Zalewski M. (2011). Effects of microcystins-containing cyanobacteria from a temperate ekosystem on human lymphocytes culture and their potential for adverse human health effects. Harmful Algae 10: 356–365. DOI: 1016/j.hal.2011.01.001. Google Scholar

  • [94] Mankiewicz-Boczek, J., Kokociński M., Gagała I., Pawełczyk J., Jurczak T. & Dziadek J. (2012). Preliminary Molecular Identification of Cylindrospermopsin-producing Cyanobacteria in Two Polish Lakes (Central Europe). FEMS Microbiol. Lett, 326: 173–179. DOI: 10.1111/j.1574-6968.2011.02451.x. CrossrefGoogle Scholar

  • [95] Maršálek, B., Bláha L. & Babica P. (2003). Analyses of microcystins in the biomass of Pseudanabaena limnetica collected in the Znojmo reservoir. Czech Phycology, Olomouc, 3: 195–197. Google Scholar

  • [96] Mazur, H., Lewandowska J., Błaszczyk A., Kot A. & Plinski M. (2003). Cyanobacterial toxins in fresh and brackisch waters of Pomorskie Province (Northern Poland). Oceanol. Hydrobiol. Stud., 32(1) 15–26. Google Scholar

  • [97] Mazur-Marzec, H., Spoof L., Kobos J., Pliński M. & Meriluoto J. (2008). Cyanobacterial hepatotoxins, microcystins and nodularins, in fresh and brackish waters of Pomeranian Province, northern Poland. Oceanol. Hydrobiol. Stud, 37(4), 1–19. Google Scholar

  • [98] Mazur-Marzec, H., Błaszczyk A., Błońska M., Cichowska A., Kobos J., Sutryk K., Toruńska A. & Pliński M. (2010). Cyanobacterial blooms and cyanotoxin production in the Baltic Sea and the lakes of Pomeranian Province. In K. Olańczuk-Neyman & H. Mazur-Marzec (Eds.) Microorganisms in the environment and environmental englineering. From ecology to technology (pp. 159–170). Monografie Komitetu Inżynierii Środowiska PAN vol. 64. Google Scholar

  • [99] Mazurkiewicz-Boroń, G., Bednarz T. & Wilk-Woźniak E. (2008). Microbial efficiency in a meromictic reservoir. Oceanol. Hydrobiol. Stud, 37(2): 3–19. DOI: 10.2478/v10009-007-0047-9. CrossrefGoogle Scholar

  • [100] Messineo, V., Bogiallib S., Melchiorrea S., Sechic N., Luglièc A., Casidduc P., Marianic M.A., Padeddac B.M., Di Corciab A., Mazzad R., Carlonid E. & Bruno M. (2009). Cyanobacterial toxins in Italian freshwaters. Limnologica 39, 93–106. DOI: 1016/j.limno.2008.09.001. Google Scholar

  • [101] Messyasz, B. (1998). Seasonal changes of phytoplankton dominated by cyanoprocaryota in Lake Laskownickie. Oceanol. Stud, 1, 33–37. YADDA: bwmeta1.element.agro-article-0837857c-eb1f-41f7-8966-cc26f41ff738. Google Scholar

  • [102] Messyasz, B. (2011). Fitoplankton. Wykaz gatunków sinic i glonów planktonowych (2004–2006). In L. Burchardt (Ed.) Jezioro Lednica. Historyczne i wspołczesne funkcjonowanie ekosystemu wodnego, Kwartet, pp. 225. Google Scholar

  • [103] Mischke, U. & Nixdorf B. (2003). Equilibrium phase conditions in shallow German lakes: How Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiologia 502(1–3): 123–132. DOI: 10.1023/B:HYDR.0000004275.81490.92. CrossrefGoogle Scholar

  • [104] Mur, L. R., Skulber O.M. & Utkilen H. (1999). Cyanobacteria in the environment, [in] Chorus I., Bartram J. (ed.) Toxic cyanobacteria in water: a guide to their public health consequences, ISBN 0-419-23930-8. Google Scholar

  • [105] Napiórkowska-Krzebietke, A. & Hutorowicz A. (2005). Long-term changes of phytoplankton in lake Mamry Północne. Oceanol. Hydrobiol. Study, 34(Suppl. 3), 217–228. DOI: 10.2478/v10086-009-0011-2. CrossrefGoogle Scholar

  • [106] Napiórkowska-Krzebietke, A. & Hutorowicz A. (2006). Long-term changes of phytoplankton in Lake Niegocin, in the Masurian Lake Region, Poland. Ocean. Hydrobiol. Study, 35(3), 209–226. YADDA: bwmeta1.element.baztech-article-BUS5-0005-0044. Google Scholar

  • [107] Napiórkowska-Krzebietke, A. & Hutorowicz A. (2007). Long-term changes in the biomass and composition of phytoplankton in a shallow, flow-through Lake Kirsajty (Masurian Lakeland, Poland). Pol. J. Natur. Sc., 22(3), 512–524. DOI: 10.2478/v10020-007-0045-0. CrossrefGoogle Scholar

  • [108] Napiórkowska-Krzebietke, A. & Hutorowicz A. (2013). A comparison of epilimnetic versus metalimnetic phytoplankton assemblages in two mesotrophic lakes, Oceanol. Hydrobiol. Stud, 42(1), 89–98. DOI: 10.2478/s13545-013-0059-x. CrossrefGoogle Scholar

  • [109] Napiórkowska-Krzebietke, A., Pasztalaniec A. & Hutorowicz A. (2009). Phytoplankton — element in ecological status assessment for lakes of the Wel river catchment area, Teka Kom. Ochr. Kszt. Środ. Przyr, — OL PAN, 6, 200–205. http://dewelopment.eu/p/Napiorkowska-Krzebietke_etal_Phytoplankton_Teka.pdf Google Scholar

  • [110] Nõges, T., Tõnno I., Laugaste R., Loigu E. & Skakalski B. (2004). The impact of changes in nutrient loading on cyanobacterial dominance in Lake Peipsi (Estonia/Russia), Arch. Hydrobiol, 160(2), 261–279. DOI: 1127/0003-9136/2004/0160-0261. CrossrefGoogle Scholar

  • [111] Olenina, I., Hajdu S., Andersson A., Edler L., Wasmund N., Busch S., Göbel J., Gromisz S., Huseby S., Huttunen M., Jaanus A., Kokkonen P., Ledaine I. & Niemkiewicz E. (2006). Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings No.106, pp. 144. Helsinki Commission, Helsinki, ISSN 0357-2994. http://www.helcom.fi/stc/files/Publications/Proceedings/bsep106.pdf Google Scholar

  • [112] O’Neil, J.M., Davis T.W., Burford M.A. & Gobler J.J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334. DOI: 1016/j.hal.2011.10.027. Google Scholar

  • [113] Ouahid, Y., Pérez-Silva G. & del Campo F.F. (2005). Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification o specific microcystin synthetase gene regions. Environ.Toxicol., 20, 235–242. DOI: 1002/tox.20103. Google Scholar

  • [114] Padisák, J. (1992). Seasonal succession of phytoplankton in the large shallow lake (Balaton, Hungary): A dynamic approach to ecological memory, its possible role and mechanisms. J. Ecol, 80, 217–230. DOI: 10.2307/2261008. CrossrefGoogle Scholar

  • [115] Padisák, J. (1997). Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol, (Suppl.) 107, 563–593. http://real.mtak.hu/3229/1/1014071.pdf Google Scholar

  • [116] Padisák, J., Borics G., Fehér G., Grigorszky I., Oldal I. Schmidt A. & Zámbóné-Doma Z. (2003). Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502, 157–168. DOI: 10.1023/B:HYDR.0000004278.10887.40. CrossrefGoogle Scholar

  • [117] Pawlik-Skowrońska, B., Skowroński T., Pirszel J. & Adamczyk A. (2004). Relationship between cyanobacterial bloom composition and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (SE Poland). Pol. J. Ecol, 52(4), 479–490. YADDA: bwmeta1.element.baztech-article-BGPK-0833-3419. Google Scholar

  • [118] Pawlik-Skowrońska, B., Pirszel J. & Kornijów R. (2008). Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann. Limnol. — Int. J. Lim, 44(2), 145–150. DOI: 1051/limn:2008015. Google Scholar

  • [119] Pawlik-Skowrońska, B., Kornijów R. & Pirszel J. (2010). Sedimentary imprint of cyanobacterial blooms — a new tool for insight into recent history of lakes. Pol. J. Ecol, 58(4), 663–670. YADDA: bwmeta1.element.baztech-article-BGPK-3178-2306. Google Scholar

  • [120] Pawlik-Skowrońska, B. & Toporowska M. (2011). Blooms of toxin-producing cyanobacteria-a real threat in small dam reservoirs at the beginning of their operation. Oceanol. Hydrobiol. Stud, 40(4), 30–37. DOI: 10.2478/s13545-011-0038-z. CrossrefGoogle Scholar

  • [121] Pawlik-Skowrońska, B., Toporowska M. & Skowroński T. (2011). Cyanobacterial blooms, cyanotoxins and their accumulation in ichthyofauna of Zemborzycki dam reservoir (E. Poland). 30th International Conference of the Polish Phycological Society. Wrocław-Pawłowice, Poland, 19–21st May. Google Scholar

  • [122] Pawlik-Skowrońska, B., Toporowska M. & Rechulicz J. (2012). Simultaneous accumulation of anatoxin-a and micorcystins in three fish species indigenous to lakes affected by cyanobacterial blooms. Oceanol. Hydrobiol. Stud, 41(4), 53–65. DOI: 10.2478/s13545-012-0039-6. CrossrefGoogle Scholar

  • [123] Pawlik-Skowrońska B. & Toporowska M. (2013). Blooms of toxigenic cyanobacteria in four regulated lakes in the Wieprz-Krzna chanel system (Łęczyńsko-Włodawskie Lakeland). Conference Function, threat and protection of small water bodies, Janów Lubelski, 25–29th September, (in Polish) Google Scholar

  • [124] Pełechata, A., Pełechaty M. & Pukacz A. (2006). Cyanoprokaryota of shallow lakes of Lubuskie Lakeland (mid-western Poland). Oceanol. Hydrobiol. Stud, 35(1), 3–14. YADDA: bwmeta1.element.baztech-article-BUS5-0005-0027. Google Scholar

  • [125] Pełechata, A., Walna B., Pełechaty M., Kaczmarek L., Ossowski P. & Lorenc M., (2009). Seasonal dynamics of the algae and blue-green assemblage of Góreckie Lake against the background of the physical-chemical properties of water and the development of macrophytes. In B. Walna, L. Kaczmarek, M. Lorenc & R. Dondajewska (Eds.) Wielkopolski Park Narodowy w badaniach przyrodniczych (pp. 27–42). Poznań-Jeziory (in Polish with Engl. summ.). Google Scholar

  • [126] Pereira, P., Onodera H., Andrinolo D., Franca S., Araújo F., Lagos N. & Oshima Y. (2000). Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon, 38(12), 1689–1702. DOI: 10.1016/S0041-0101(00)00100-8. CrossrefGoogle Scholar

  • [127] Preußel, K., Stüken A., Wiedner C., Chorus I. & Fastner J. (2006). First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47: 156–162. DOI: 1016/j.toxicon.2005.10.013. Google Scholar

  • [128] Pliński, M., Musiał A. & Ostrowski B. (1998). Blue-green algae blooms in the Gulf of Gdańsk and surrounding area. Oceanol. Stud, 1, 39–44. YADDA: bwmeta1.element.baztech-article-BUS8-0025-0023. Google Scholar

  • [129] Pociecha A. & Wilk-Woźniak E. (2003). Cyanoprokaryota-Cladocera relationships in a submontane dam reservoir modified by hydrological conditions. Algol. Stud, 109, 499–508. DOI: 1127/1864-1318/2003/0109-0499. Google Scholar

  • [130] Pociecha A. & Wilk-Woźniak E. (2005). Dynamics of phyto- and zooplankton in the submountane dam reservoirs with different trophic status. Limnol. Rev, 5, 215–221. http://www.ptlim.pl/lr2005/pdf/pociecha.pdf Google Scholar

  • [131] Pociecha A. & Wilk-Woźniak E. (2006). The life strategy and Dynamics of selected species of phyto- and zooplankton in a dam reservoir Turing „wet” and „dry” years. Pol. J. Ecol, 54(1), 29–38. Google Scholar

  • [132] Prus, P., Hutorowicz A. & Napiórkowksa-Krzebietke A. (2007). Fitoplankton i bentos w zbiornikach zaporowych Brody Iłżeckie i Chańcza w odniesieniu do gospodarki rybackiej. In M. Mickiewicz (Ed.) Stan rybactwa w jeziorach, rzekach i zbiornikach zaporowych w 2006 roku (pp. 111–124). IRS Olsztyn (in Polish). Google Scholar

  • [133] Rakowska, B., Sitkowska M., Szczepocka E. & Szulc B. (2005). Cyanobacteria water blooms with various eucariotic algae in the Sulejów Reservoir. Oceanol. Hydrobiol. Stud, 34(1), 31–38. YADDA: bwmeta1.element.baztech-article-BUS5-0012-0019. Google Scholar

  • [134] Rantala, A., Rajaniemi-Wacklin P., Lyra Ch., Lepisto L., Rintala J., Mankiewicz-Boczek J. & Sivonen K. (2006). Detection of Microcystin-Producing Cyanobacteria in Finnish Lakes with Genus-Specific Microcystin Synthetase Gene E (mcyE) PCR and Associations with Environmental Factors. Appl. Environ. Microbiol, 22, 6101–6110. DOI: 10.1128/AEM.01058-06. CrossrefGoogle Scholar

  • [135] Rapala, J., Sivonen K., Luukkainen R. & Niemelä S. I. (1993). Anatoxin-a concentrations in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena strains — a laboratory study. J. Appl. Phycol, 5,581–591. DOI: 1007/BF02184637. Google Scholar

  • [136] Rapala J. & Sivonen K. (1998). Assessment of environmental conditions that favour hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation a different temperatures. Microb. Ecol, 36, 181–192. http://link.springer.com/content/pdf/10.1007/s002489900105.pdf Google Scholar

  • [137] Reinehart, K. L., Harada K-I., Namikoshi M., Chen C. & Harvis, C. A. (1988). Nodularin, Microcystin, and the Configuration of Adda. J. Am. Chem. Soc, 110, 8557–8558. DOI: 10.1021/ja00233a049. CrossrefGoogle Scholar

  • [138] Repka, S., Meyerhöfer M., von Bröckel K. & Sivonen K. (2004). Associations of cyanobacterial toxin, nodularin, with environmental factors and zooplankton in the Baltic Sea. Microb. Ecol., 47, 350–358. DOI: 10.1007/s00248-003-2010-y. CrossrefGoogle Scholar

  • [139] Rohrlack, T., Dittman E., Börner T. & Christoffersen K. (2001), Effects of cell-bound microcystins of survival and feeding of Daphnia spp. Appl. Environ. Microbiol, 67(8), 3523–3529. DOI: 1128/AEM.67.8.3523-3529.2001. Google Scholar

  • [140] Rohrlack, T., Edvardsen B., Skulberg R., Halstvedt C. B., Utkilen H. C., Ptacnik R. & Skulberg O.M. (2008). Oligopeptide chemotypes of the toxic freshwater cyanobacterium Planktothrix can form subpopulations with dissimilar ecological traits. Limnol. Oceanogr, 53(4), 1279–1293. http://www.aslo.org/lo/toc/vol_53/issue_4/1279.pdf Google Scholar

  • [141] Rojo, C. & Cobelas M. A. (1994). Population dynamics of Limnothrix redekei, Oscillatoria lanceaeformis, Planktothrix agardhii and Pseudanabaena limnetica (cyanobacteria) in a shallow hypertrophic lake (Spain). Hydrobiologia 275–276(1), 165–171. DOI: 10.1007/BF00026708. CrossrefGoogle Scholar

  • [142] Rücker, J., Stüken A., Nixdorf B., Fastner J., Chorus I. & Wiedner C. (2007), Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon 50, 800–809. DOI: 1016/j.toxicon.2007.06.019. Google Scholar

  • [143] Santos, M. C. R., Muelle H. & Pacheco D. M. D. (2012). Cyanobacteria and microcystins in lake Furnas (S. Miguel island-Azores). Limnetica, 31(1), 107–118. http://www.limnetica.com/Limnetica/Limne31/L31a107_Cyanobacteria_microcystins_lake_Furnas.pdf Google Scholar

  • [144] Sierosławska, A., Rymuszka A., Kalinowska R., Skowroński T., Bownik A. & Pawlik-Skowrońska B. (2010). Toxicity of cyanobacterial bloom in the eutrophic dam reservoir (Southeast Poland). Environ. Toxicol. Chem, 29, 556–560. DOI: 10.1002/etc.86. CrossrefGoogle Scholar

  • [145] Sivonen, K., Niemelä S. I., Niemi R. M., Lepistö L., Luoma T. H. & Räsänen L. A. (1990). Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia, 190, 267–275. DOI: 10.1007/BF00008195. CrossrefGoogle Scholar

  • [146] Sivonen, K. & Börner T. (2008). Bioactive compounds produced by cyanobacteria. In A. Herrero & E. Flores (Eds.) The Cyanobacteria. Molecular biology, genomics and evolution (pp. 159–197). Caister Academic Press, Norfolk, UK. Google Scholar

  • [147] Sivonen, K. & Jones G. (1999), Cyanobacterial toxins In I. Chorus & J. Bartram (Eds.), Toxic Cyanobacteria in Water, A Guide to Their Public Health Consequences, Monitoring and Management (pp. 41–111). Published by WHO, Spon Press, London. Google Scholar

  • [148] Skulberg, O. M., Underdal B. & Utkilen H. (1994). Toxic water blooms with cyanophytes in Norway — current knowledge. Arch. Hydrobiol. Supp., Algol. Stud, 75, 279–289. Google Scholar

  • [149] Solis, M. (2005). Relationships between selected abiotic variables and phytoplankton composition in deep mesotrophic Lake Zagłębocze. Oceanol. Hydrobiol. Stud., 34(4), 81–96. YADDA: bwmeta1.element.baztech-article-BUS5-0012-0049. Google Scholar

  • [150] Solis, M. (2010). Population dynamics of Planktothrix agardhii in relation to environmental factors in the shallow reservoir Mytycze (Łeczna-Włodawa Lakeland). Book of abstracts of the 29th International Conference of the Polish Phycological Society, Kraków, Poland, 19–23rd May 2010, p. 156. Google Scholar

  • [151] Solis, M., Poniewozik M. & Mencfel R. (2009). Bloom-forming cyanobacteria and other algae in selected anthropogenic reservoirs of the Łęczna-Włodawa Lakeland. Oceanol. Hydrobiol. Stud, 38(Suppl.2), 71–78. Google Scholar

  • [152] Solis, M., Poniewozik M. & Wojciechowska W. (2010). The assessment of water fertility based on biodiversity of planktonic alga community in six lakes located in the Biosphere Reserve “Polesie Zachodnie”. In T. J. Chmielewski & D. Piasecki (Eds.) The future of hydrogenic landscapes in European biosphere reserves (pp. 321–340). TRIO System Jacek Andrzejewski, Lublin. Google Scholar

  • [153] Stefaniak, K. & Kokociński M. (2005). Occurrence of invasive cyanobacteria species in polimictic lakes of the Wielkopolska region (Western Poland). Oceanol. Hydrobiol. Stud, 34(Suppl.3), 137–148. YADDA bwmeta1.element.agro-article-8b7051ae-26ae-4e53-a83a-7664d77c702f. Google Scholar

  • [154] Stefaniak, K., Kokociński M. & Messyasz B. (2005). Dynamics of Planktothrix Agardhii (Gom.) Anagn. et Kom. blooms in polimictic Lake Laskownickie and Grylewskie (Wielkopolska Region) Poland. Oceanol. Hydrobiol. Stud, 34(Suppl.3), 125–136. Google Scholar

  • [155] Stewart, I., Schluter P.J. & Shaw G.R. (2006). Cyanobacterial lipopolysaccharides and human health — a review. Env. Health, 24, 5–7. DOI: 10.1186/1476-069X-5-7. CrossrefGoogle Scholar

  • [156] Stüken, A., Campbell R.J., Quesada A., Sukenik A., Dadheech P. & Wiedner C. (2009). Genetic and morphologic characterization of four putative cylindrospermopsin producing species of the cyanobacterial genera Anabaena and Aphanizomenon. J. Plankton Res, 31(5), 465–480. DOI: 10.1093/plankt/fbp011. CrossrefGoogle Scholar

  • [157] Sukenik, A., Hadas O., Kaplan A. & Quesada A. (2012). Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes — physiological, regional, and global driving forces. Frontiers in Microbiology, 3(88), 1–9. DOI: 3389/fmicb.2012.00086. Google Scholar

  • [158] Sychrova, E., Štěpánková T., Nováková K., Bláha L., Giesy, J. P. & Hilscherová K. (2012). Estrogenic activity in extracts and exudates of cyanobacteria and green algae. Environ. Int., 38: 134–140. DOI: 1016/j.envint.2011.10.004. Google Scholar

  • [159] Szczurowska, A., Czernaś K., Banach B., 2009. Phytoplankton communities of the Lake Białe (Łęczyna-Włodawa Lakeland). Teka. Kom. Ochr. Środ. Przyr, OL PAN. 6, 362–367. http://www.pan-ol.lublin.pl/wydawnictwa/TOchr7/spis.pdf Google Scholar

  • [160] Szeląg-Wasilewska, E. (1997). Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia 342/343, 79–85. DOI: 10.1007/978-94-011-5648-6_9. CrossrefGoogle Scholar

  • [161] Szeląg-Wasilewska, E. (2006). Trophic status of lake water evaluated using phytoplankton community structure — change after two decades. Pol. J. Ecol, 15(1), 139–144. http://www.pjoes.com/pdf/15.1/139-144.pdf Google Scholar

  • [162] Szeląg-Wasilewska, E. (2007). Trophic state assessment based on late summer phytoplankton community structure: a case study for epilimnetic lake water. Oceanol. Hydrobiol. Stud, 36(3), 53–63. YADDA: bwmeta1.element.baztech-article-BUS5-0008-0020. Google Scholar

  • [163] Szeląg-Wasilewska, E., Zagajewski P. & Stachnik W. (2009). Cyanobacterial community of the lowland Warta River (Poland). Oceanol. Hydrobiol. Stud, 38(Suppl.3), 99–106. Google Scholar

  • [164] Tarczyńska, M., Romanowska-Duda Z., Jurczak T. & Zalewski M. (2001). Toxic cyanobacterial blooms in drinking water reservoir — causes, consequences and management strategy. Wat. Sci. Tech. Water Supply, 1, 237–246. Google Scholar

  • [165] Toporowska, M., Pawilk-Skowrońska B., Krupa D., & Kornijów R. (2010). Winter versus summer blooming of phytoplankton in a shallow lake: effect of hypertrophic conditions. Pol. J. Ecol, 58(1), 3–12. http://www.pol.j.ecol.cbe-pan.pl/article/ar58_1_01.pdf Google Scholar

  • [166] Toporowska, M., Pawilk-Skowrońska B. & Kalinowska R. (2013). Accumulation and effects of cyanobacterial microcystins and anatoxin-a on benthic larvae of Chironomus sp. (Diptera: Chironomidae). Eur. J. Entomol, (in press). Google Scholar

  • [167] Via-Ordorika, L., Fastner J., Kurmayer R., Hisbergues M., Dittmann E., Komarek J., Erhard M. & Chorus I. (2004). Distribution of microcystin-producing and nonmicrocystin-producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst. Appl. Microbiol, 27(5), 592–602. DOI: 1078/0723202041748163. Google Scholar

  • [168] Wacklin, P., Hoffmann L. & Komárek J. (2009). Nomenclatiral validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahaut) comb. nova. Fottea, 9, 59–64. http://fottea.czechphycology.cz/_contents/F09-1-2009-05.pdf CrossrefGoogle Scholar

  • [169] Walsby, A. E., Hayes P. K., Boje R. & Stal L. J. (1997). The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist 136, 407–417. DOI: 10.1046/j.1469-8137.1997.00754.x. CrossrefGoogle Scholar

  • [170] Walsby, A. E. (2005). Stratification by cyanobacteria in lakes: a dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytologist 168, 365–376. DOI: 10.1111/j.1469-8137.2005.01508.x. CrossrefGoogle Scholar

  • [171] Wilk-Woźniak, E. (1998). Late autumn mass development of Woronichinia naegeliana (Cyanophyceae) in dam reservoir in Southern Poland. Biologia, Bratislava 53(1), 1–5. Google Scholar

  • [172] Wilk-Woźniak, E. & Bucka H. (1998). Occurence of dominating species in the vegetative period in two chosen dam reservoirs of southern Poland (Wisła-Czarne Reservoir and Dobczyce Reservoir). Oceanol. Stud, 2, 77–81. YADDA: bwmeta1.element.agro-article-e4a80973-404a-48c6-b6ed-53494e62ca0c. Google Scholar

  • [173] Wilk-Woźniak E. & Bucka H. (2000). Species diversity of algae and cyanobacteria in phytoplankton communities on the example of history of Roźnów dam reservoir. A review. Pol. Arch. Hydrobiol, 47(2), 213–224. Google Scholar

  • [174] Wilk-Woźniak, E. & Mazurkiewicz-Boroń G. (2003). The autumn dominance of cyanoprokaryotes in a deep meso-eutrophic submontane reservoir. Biologia, Bratislavia 58(1), 17–24. Google Scholar

  • [175] Wilk-Woźniak, E. & Cerbin S., Marshall H.G., Burchardt L. (2006). Ultra-structure of two common cyanobacteria: Microcystis aeruginosa Kütz. And Woronichinia naegeliana (Unger) Elenkin using scanning electron microscopy. Algol. Stud, 121, 85–89. DOI: 1127/1864-1318/2006/0121-0085. Google Scholar

  • [176] Willame, R., Jurczak T., Iffly J.-F., Kull T. & Meriluoto J. (2005). Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiologia 551, 99–117. DOI: 10.1007/s10750-005-4453-2 CrossrefGoogle Scholar

  • [177] Willame, R., Boutte C., Grubisic S., Wilmotte A., Komarek J. & Hoffmann L. (2006). Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxembourg. J. Phycol, 42, 1312–1332. DOI: 10.1111/j.1529-8817.2006.00284.x. CrossrefGoogle Scholar

  • [178] Willén, T. & Mattsson, R. (1997). Water-blooming and toxinproducing Cyanobacteria in Swedish fresh and brackish waters. 1981–1995. Hydrobiologia 353, 181–192. DOI: 1023/A:1003047019422. Google Scholar

  • [179] Wiśniewska, M. (1998). Cyanophyta blooms in Koronowski Reservoir in the background of environmental conditions. Oceanol. Stud, 1, 45–52. YADDA bwmeta1.element.baztech-article-BUS8-0025-0024. Google Scholar

  • [180] Wiśniewska, M. (2010). Phytoplankton dynamics in the reservoir lake “Żur” on the pomeranian Wda River. Oceanol. Hydrobiol. Stud, 39(4), 157–171. DOI: 10.2478/v10009-010-0058-9 CrossrefGoogle Scholar

  • [181] Wiśniewska, M., Krupa D., Pawlik-Skowrońska B. & Kornijów R. (2007). Development of toxic Planktothrix agardhii (Gom.) Anagn. et Kom. and potentially toxic algae in the hypertrophic Lake Syczyńskie (Eastern Poland). Oceanol. Hydrobiol. Stud, 36(Suppl.1), 173–179. Google Scholar

  • [182] WHO, 1998. Guidelines for Drinking-water Quality. Second edition, Addendum to Volume 2, Health criteria and other supporting information, Geneva. Google Scholar

  • [183] Wojciechowska, W., Poniewozik M. & Pasztelaniec A. (2004). Vertical distribution of dominant cyanobacteria species in three lakes — evidence of tolerance to different turbulence and oxygen conditions, Polish J. Ecol, 52(3), 347–351. http://www.pol.j.ecol.cbe-pan.pl/article/ar52_3_09.pdf Google Scholar

  • [184] Wojciechowska, W. & Solis M. (2009). Pro- and eukaryotic algae in lakes of the Łęczyńsko-Włodawskie Lakeland, Wyd. KUL, Lublin, str. 86 (in Polish). Google Scholar

  • [185] Yépremian, C., Gugger M.F., Briand E., Catherine A., Berger C., Quiblier C. & Bernard C. (2007). Microcystin ecotype in a perennial Planktothrix agardhii bloom. Water Research 41, 4446–4456. DOI: 1016/j.watres.2007.06.028. Google Scholar

  • [186] Zapomělová, E., Skácelová O., Pumann O., Kopp R. & Janeček E. (2012). Biogeographically interesting planktonic Nostocales (Cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaule comb. nova). Hydrobiologia 698, 353–365. DOI: 10.1007/s10750-012-1034-z. CrossrefGoogle Scholar

  • [187] Zagajewski, P., Gołdyn R. & Fabiś M. (2007). Water blooms and their toxicity in public swimming areas of lakes in the Poznań district. Oceanol. Hydrobiol. Stud, 36(Suppl.1), 181–187. YADDA bwmeta1.element.agro-article-7def515e-c29d-4bd3-8639-7a8396e28c80. Google Scholar

  • [188] Zagajewski, P., Gołdyn R. & Fabiś M. (2009). Cyanobacterial volume and microcystin concentration in recreational lakes (Poznań — Western Poland). Oceanol. Hydrobiol. Stud, 38(Suppl.2), 113–120. Google Scholar

  • [189] Zębek, E. (2005). Annual succession patterns of blue-green algae as related to physicochemical water parameters in the urban Lake Jeziorak Mały in the 1998–2003 period. Oceanol. Hydrobiol. Stud, 34(4), 33–46. Google Scholar

  • [190] Zębek, E. (2006). Quantitative changes of Planktolyngbya brevicellularis, Limnothrix redekei and Aphanizomenon gracile in the annual cycle vs. physicochemical water parameters in the urban Lake Jeziorak Mały. Oceanol. Hydrobiol. Stud, 35(1), 96–84. YADDA: bwmeta1.element.baztech-article-BUS5-0005-0033. Google Scholar

  • [191] Znachor, P., Jurczak T., Komárkowa J., Jezberová J., Mankiewicz J., Kaštovská K. & Zapomělová E. (2006). Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environ. Toxicol., 21, 236–243. DOI: DOI 10.1002/tox.20176. CrossrefGoogle Scholar

About the article

Published Online: 2014-01-23

Published in Print: 2013-12-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 42, Issue 4, Pages 358–378, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-013-0093-8.

Export Citation

© 2013 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Theo W. Dreher, Lindsay P. Collart, Ryan S. Mueller, Kimberly H. Halsey, Robert J. Bildfell, Peter Schreder, Arya Sobhakumari, and Rodney Ferry
Toxicon: X, 2018, Page 100003
[3]
[4]
Magdalena Toporowska, Beata Ferencz, and Jarosław Dawidek
Ecohydrology, 2018, Page e2017
[5]
Katarzyna Kowalczewska-Madura, Renata Dondajewska, Ryszard Gołdyn, Anna Kozak, and Beata Messyasz
Water, Air, & Soil Pollution, 2018, Volume 229, Number 8
[6]
Julita A. Dunalska, Agnieszka Napiórkowska-Krzebietke, Agnieszka Ławniczak-Malińska, Elżbieta Bogacka-Kapusta, and Grzegorz Wiśniewski
Ecohydrology & Hydrobiology, 2018
[7]
Łukasz Wejnerowski, Piotr Rzymski, Mikołaj Kokociński, and Jussi Meriluoto
Ecotoxicology, 2018
[8]
Karine Felix Ribeiro, Leandro Duarte, and Luciane Oliveira Crossetti
Hydrobiologia, 2018
[9]
Mikołaj Kokociński, Ilona Gągała, Iwona Jasser, Jūratė Karosienė, Jūratė Kasperovičienė, Justyna Kobos, Judita Koreivienė, Janne Soininen, Agnieszka Szczurowska, Michał Woszczyk, and Joanna Mankiewicz-Boczek
FEMS Microbiology Ecology, 2017, Volume 93, Number 4
[10]
Marzenna Wiśniewska and Ewa A. Dembowska
Oceanological and Hydrobiological Studies, 2017, Volume 46, Number 3
[12]
Agnieszka Napiórkowska-Krzebietke, Julita A. Dunalska, and Elżbieta Zębek
Acta Oecologica, 2017, Volume 81, Page 10
[13]
Stefanie N. Scholz, Maranda Esterhuizen-Londt, and Stephan Pflugmacher
Toxicological & Environmental Chemistry, 2017, Volume 99, Number 4, Page 543
[14]
Anna Kozak, Ryszard Gołdyn, Renata Dondajewska, and Adrianna Ianora
PLOS ONE, 2015, Volume 10, Number 4, Page e0124738
[15]
Maranda Esterhuizen-Londt, Marie von Schnehen, Sandra Kühn, and Stephan Pflugmacher
Aquatic Toxicology, 2016, Volume 179, Page 151
[16]
Magdalena Toporowska, Barbara Pawlik-Skowrońska, and Renata Kalinowska
Water, Air, & Soil Pollution, 2016, Volume 227, Number 9
[17]
Aleksandra Pełechata, Mariusz Pełechaty, and Andrzej Pukacz
Ecological Indicators, 2016, Volume 71, Page 477
[18]
Barbara Pawlik-Skowronska and Magdalena Toporowska
Hydrobiologia, 2016, Volume 778, Number 1, Page 45
[21]
Bożena Wojtasiewicz and Joanna Stoń-Egiert
Journal of Applied Phycology, 2016, Volume 28, Number 4, Page 2299
[22]
Piotr Rzymski, Tadeusz Sobczyński, Piotr Klimaszyk, and Przemysław Niedzielski
Limnological Review, 2015, Volume 15, Number 1
[23]
Geoffrey A. Codd, Marcin Pliński, Waldemar Surosz, John Hutson, and Howard J. Fallowfield
Toxicon, 2015, Volume 108, Page 285
[24]
Ewa A. Dembowska
Wetlands Ecology and Management, 2015, Volume 23, Number 3, Page 535
[25]
Judit Padisák, Gábor Vasas, and Gábor Borics
Hydrobiologia, 2016, Volume 764, Number 1, Page 3
[26]
Magdalena Grabowska, Justyna Kobos, Anna Toruńska-Sitarz, and Hanna Mazur-Marzec
Archives of Microbiology, 2014, Volume 196, Number 10, Page 697

Comments (0)

Please log in or register to comment.
Log in