Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 43, Issue 1

Issues

The influence of hydromorphological modifications of the littoral zone in lakes on macrophytes

Szymon Jusik
  • Department of Ecology and Environmental Protection, Poznań University of Life Sciences, ul. Piątkowska 94c, 60-649, Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aurelia Macioł
  • Department of Ecology, Biogeochemistry and Environmental Protection, University of Wroclaw, ul. Kanonia 6/8, 50-328, Wrocław, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-03-28 | DOI: https://doi.org/10.2478/s13545-014-0119-x

Abstract

The study aimed at determining the influence of hydromorphological modifications of the littoral zone in lakes on the occurrence and quantitative diversity of macrophytes. The field research was carried out at the peak of the growing season (June – September) between 2006 and 2009. Altogether, 457 transects were studied, located in 5 lakes. Studies on the hydromorphology were performed with the method of Lake Habitat Survey (LHS), and on macrophytes — with the method of transects. The studied sites were divided into 3 groups of different intensity of morphological transformations. The identified groups constituted the starting point for the analysis of influence exerted by transformations on macrophytes. The obtained results indicate that hydromorphological modifications of lakes are an important ecological factor affecting the occurrence and quantitative diversity of macrophytes. The transformations recorded in the studied reservoirs resulted mostly from recreational exploitation. They were responsible for mechanical elimination of dominant species, which led to an increased number of taxa, synanthropization and an average level of hemeroby as well as a decrease in the total vegetation cover. Helophytes were the most negatively affected group by the transformations, which reduce their contribution in the vegetation cover, whereas macroscopic filamentous algae and elodeids were positively affected.

Keywords: macrophytes; anthropogenic transformations; hydromorphological modifications; lakes; littoral zone

  • [1] Abernethy, V.J. Sabbatini M.R. & Murphy K.J. (1996). Response of Elodea canadensis Michx. and Myriophyllum spicatum L. to shade, cutting and competition in experimental culture. Hydrobiologia 340, 219–224. DOI: 10.1007/BF00012758 http://dx.doi.org/10.1007/BF00012758CrossrefGoogle Scholar

  • [2] Baattrup-Pedersen, A. & Riis T. (1999). Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwater Biology 42 (2), 375–385. DOI: 10.1046/j.1365-2427.1999.444487.x http://dx.doi.org/10.1046/j.1365-2427.1999.444487.xCrossrefGoogle Scholar

  • [3] Bernez, I., Daniel H., Haury J. & Ferreira M.T. (2004). Combined effects of environmental factors and regulation on macrophyte vegetation along three rivers in Western France. River Research and Applications 20, 43–59. DOI: 10.1002/rra.718 http://dx.doi.org/10.1002/rra.718CrossrefGoogle Scholar

  • [4] Bosch, I.J., Makarewicz J.C., Lewis T.W., Bonk E.A., Finiguerra M. & Groveman B. (2009). Management of agricultural practices results in declines of filamentous algae in the lake littoral. Journal of Great Lakes Research #35, 99–108. DOI: 10.1016/j.jglr.2008.10.007 CrossrefGoogle Scholar

  • [5] Chmiel, J. (1993). Flora of vascular plants in the eastern part of the Gniezno Lakeland and its anthropogenic transformations in the 19th and 20th centuries. Poznan: Wyd. Sorus (English summary). Google Scholar

  • [6] Daubenmire, R. (1959). A canopy-coverage method of vegetational analysis. Northwest Science 33, 43–64. Google Scholar

  • [7] Drzewiecki, M. (1997). Degradation forms in water reservoirs and their surroundings as a result of recreational exploitation. Choinski A. (ed.). Influence of anthropopressure on lakes. Wyd. Homini, 19–23 (In Polish). Google Scholar

  • [8] Elias, J.E. & Meyer M.W. (2003). Comparisons of undeveloped and developed shorelands, northern Wisconsin, and recommendations for restoration. Wetlands 23, 800–816. DOI: 10.1672/0277-5212(2003)023[0800:COUADS]2.0.CO;2 http://dx.doi.org/10.1672/0277-5212(2003)023[0800:COUADS]2.0.CO;2CrossrefGoogle Scholar

  • [9] European Commission (2000). Directive 2000/60/EC of the European Parliament and of the Council — Establishing a Framework for Community Action in the Field of Water Policy. European Commission, Brussels. Google Scholar

  • [10] Faliński, J.B. (1972). Synanthropization of vegetation — an attempt to define the essence of the process and the main directions of research. Phytocoenosis 1(3), 157–170 (English summary). Google Scholar

  • [11] Hellsten, S. (1997). Environmental factors related to water level regulation — a comparative study in northern Finland. Boreal Environment Research 2, 345–367. Google Scholar

  • [12] Hellsten, S. (2000). Effects of lake water level regulation on aquatic macrophyte stands in northern Finland and options to predict these impacts under different conditions. Acta Univ. Oul. A 348. Google Scholar

  • [13] Hellsten, S. & Dudley B. (2006). Hydrological pressures in lakes. In: Solimini A.G., Cardoso A.C. & Heiskanen A.S. (ed.). Indicators and methods for the ecological status assessment under the Water Framework Directive. Institute for Environment and Sustainability, JRC-EU, 135–140. Google Scholar

  • [14] Hellsten, S. & Riihimäki J. (1996). Effects of lake water level regulation on the dynamics of littoral vegetation in northern Finland. Hydrobiologia 340, 85–92. DOI: 10.1007/BF00012738 http://dx.doi.org/10.1007/BF00012738CrossrefGoogle Scholar

  • [15] Jackowiak, B. (1990). Anthropogenic transformations of the vascular flora in the city of Poznan. Poznan: Wyd. Nauk. UAM, Series Biology 42B (English summary). Google Scholar

  • [16] Janauer, G.A. (2003). Aquatic macrophytes in freshwaters: the assessment of ecological quality. In: Ruoppa M., Heinonen P., Pilke A., Rekolainen S., Toivonen H. & Vuoristo H. (ed.). How to assess and monitor ecological quality in freshwaters. TemaNord 2003 547, 24–28. Google Scholar

  • [17] Jennings, M.J., Emmons E.E., Hatzenbeler G.R., Edwards C. & Bozek M.A. (2003). Is littoral habitat affected by residential development and land use in watersheds of Wisconsin lakes? Lake and Reservoir Management 19, 272–279. http://dx.doi.org/10.1080/07438140309354092Google Scholar

  • [18] Keto, A., Tarvainen A. & Hellsten S. (2006). The effect of water level regulation on species richness and abundance of aquatic macrophytes in Finnish lakes. International Association of Theoretical and Applied Limnology 29(4), 2103–2108. Google Scholar

  • [19] Lacoul, P. & Freedman B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14, 89–136. DOI: 10.1139/A06-001 http://dx.doi.org/10.1139/a06-001CrossrefGoogle Scholar

  • [20] Lenssen, J.P.M., Menting F.B.J., Van der putten W.H. & Blom C.W.P.M. (1999). Control of plant species richness and zonation of functional groups along a freshwater flooding gradient. Oikos 86, 523–534. DOI: 10.2307/3546656 http://dx.doi.org/10.2307/3546656CrossrefGoogle Scholar

  • [21] McGoffa, E., Aroviitab J., Pilottoc F., Milerc O., Soliminid A.G., Porstc G., Jurcae T., Donohuee L. & Sandinf L. (2013). Assessing the relationship between the Lake Habitat Survey and littoral macroinvertebrate communities in European lakes. Ecological Indicators 25, 205–214. DOI: 10.1016/j.ecolind.2012.09.018 http://dx.doi.org/10.1016/j.ecolind.2012.09.018CrossrefWeb of ScienceGoogle Scholar

  • [22] McParland, C. & Barrett O. (2009). Hydromorphological literature reviews for lakes. Environment Agency, Bristol 59. Google Scholar

  • [23] Ostendorp, W., Schmieder K. & Jöhnk K. (2004). Assessment of human pressures and their hydromorphological impacts on lakeshores in Europe. Ecohydrology and Hydrobiology 4, 229–245. Google Scholar

  • [24] Piotrowicz, R. (1990). Influence of cutting the macrophytes on functioning of a lake ecosystem. In: Kajak Z. (ed.) Functioning of aquatic ecosystems, their protection and restoration. Part 2:. Ecology of lakes, their protection and restoration. Experiments on ecosystems 2, 164–182 (In Polish). Google Scholar

  • [25] Rørslett, B. (1991). Principal determinants of aquatic macrophyte richness in northern European lakes. Aquatic Botany 39, 173–193. DOI: 10.1016/0304-3770(91)90031-Y http://dx.doi.org/10.1016/0304-3770(91)90031-YCrossrefGoogle Scholar

  • [26] Rowan, J.S., Duck R.W., Carwardine J., Bragg O.M., Black A.R. & Cutler M.E.J. (2004). Lake habitat survey in the United Kingdom. Draft field survey guidance manual. Abridged version of full survey collecting key data: LHScore. The Environmental Systems Research Group University of Dundee. Google Scholar

  • [27] Rowan, J.S., Rowan J. Carwardine R.W. Duck O.M. Bragg A.R. Black M.E.J. Cutler I. & Soutar P.J. (2006). Development of a technique for Lake Habitat Survey (LHS) with applications for the European Union water framework directive. Aquatic Conservation Marine and Freshwater Ecosystem 16, 637–657. DOI:10.1002/aqc.786 http://dx.doi.org/10.1002/aqc.786CrossrefGoogle Scholar

  • [28] Rowan, J.S., Greig S.J., Armstrong C.T., Smith D.C. & Tierney D. (2012). Development of a classification and decision-support tool for assessing lake hydromorphology. Environmental Modelling & Software 36, 86–98. DOI: 10.1016/j.envsoft.2011.09.006 http://dx.doi.org/10.1016/j.envsoft.2011.09.006CrossrefWeb of ScienceGoogle Scholar

  • [29] Schnaiberg, J., Riera J., Turner M.G. & Voss P.R. (2002). Explaining human settlement patterns in a recreational lake district: Vilas County, WI, USA. Environmental Management 30, 24–34. DOI: 10.1007/s00267-002-2450-z http://dx.doi.org/10.1007/s00267-002-2450-zCrossrefGoogle Scholar

  • [30] Schaumburg, J., Schranz C., Foerster J., Gutowski A., Hofmann G., Meilinger P., Schneider S. & Schmedtje U. (2004). Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34, 283–301. DOI: 10.1016/S0075-9511(04)80002-1 http://dx.doi.org/10.1016/S0075-9511(04)80002-1CrossrefGoogle Scholar

  • [31] Søndergaard, M. & Jeppesen E. (2007). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology 44, 1089–1094. DOI: 10.1111/j.1365-2664.2007.01426.x http://dx.doi.org/10.1111/j.1365-2664.2007.01426.xWeb of ScienceCrossrefGoogle Scholar

  • [32] Soszka, H., Pasztaleniec A., Koprowska K., Kolada A. & Ochocka A. (2012). The effect of lake hydromophological alterations on aquatic biota — an overview. Ochrona Środowiska i Zasobów Naturalnych 51, 24–52 (In Polish). Google Scholar

  • [33] Srivastava, D.S., Staicer C.A. & Freedman B. (1995). Aquatic vegetation of Nova Scotian lakes differing in acidity and trophic status. Aquatic Botany 51, 181–196. DOI: 10.1016/0304-3770(95)00457-B http://dx.doi.org/10.1016/0304-3770(95)00457-BCrossrefGoogle Scholar

  • [34] Staniszewski, R., Szoszkiewicz K., Zbierska J., Leśny J., Jusik S. & Clark R. (2006). Assessment of sources of uncertainty in macrophyte surveys and the consequences for river classification. Hydrobiologia 566, 235–246. DOI: 10.1007/s10750-006-0093-4 http://dx.doi.org/10.1007/s10750-006-0093-4CrossrefGoogle Scholar

  • [35] Sukopp, H. (1972). Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluss des Menschen. Ber. Landwirtsch 50, 112–130. Google Scholar

  • [36] Sutela, T., Aroviita J. & Keto A. (2013). Assessing ecological status of regulated lakes with littoral macrophyte, macroinvertebrate and fish assemblages. Ecological Indicators 24, 185–192. DOI: 10.1016/j.ecolind.2012.06.015 http://dx.doi.org/10.1016/j.ecolind.2012.06.015Web of ScienceCrossrefGoogle Scholar

  • [37] Szmeja, J. (2006). Guidebook to studies on aquatic vegetation. Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk (In Polish). Google Scholar

  • [38] Walsh, S.E., Soranno P.A. & Rutledge D.T. (2003). Lakes, wetlands and streams as predictors of land use/cover distribution. Environmental Management 31, 198–214. DOI: 10.1007/s00267-002-2833-1 http://dx.doi.org/10.1007/s00267-002-2833-1CrossrefGoogle Scholar

  • [39] Wardas, M., Aleksander-Kwaterczak U., Jusik S., Hryc B., Zgoła T., Sztuka M., Kaczmarska M. & Mazurek M. (2010). An attempt to assess the impact of anthropopressure on the ecological state of urbanised watercourses of Kraków conurbation and the difficulties encountered. Journal of Elementology 15(4), 725–743. Google Scholar

  • [40] Whitton, B.A. & Kelly M.G. (1995). Use of algae and other plants for monitoring rivers. Australian Journal of Ecology 20, 45–56. DOI: 10.1111/j.1442-9993.1995.tb00521.x http://dx.doi.org/10.1111/j.1442-9993.1995.tb00521.xCrossrefGoogle Scholar

  • [41] Ziarnek, M. (2007). Human impact on plant communities in urban area assessed with hemeroby grades. Polish Journal of Ecology 55(1), 161–167. Google Scholar

  • [42] Zieliński, P., Ejsmont-Karabin J., Grabowska M., Karpowicz M. (2011). Ecological status of shallow Lake Gorbacz (NE Poland) in its final stage before drying up. Oceanological and Hydrobiological Studies 40 (2), 1–12. DOI: 10.2478/s13545-011-0011-x http://dx.doi.org/10.2478/s13545-011-0011-xWeb of ScienceCrossrefGoogle Scholar

  • [43] Zohary, T. & Ostrovsky I. (2011). Ecological impacts of excessive water level fluctuations in stratified freshwater lakes. Inland Waters 1, 47–59. DOI: 10.5268/IW-1.1.406 CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2014-03-28

Published in Print: 2014-03-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 43, Issue 1, Pages 66–76, ISSN (Online) 1897-3191, DOI: https://doi.org/10.2478/s13545-014-0119-x.

Export Citation

© 2014 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marzia Ciampittiello, Claudia Dresti, and Helmi Saidi
Current World Environment, 2017, Volume 12, Number 3, Page 491
[3]
Dragana D. Jenačković, Dmitar Lakušić, Ivana Zlatković, Marina Jušković, N. Vladimir Ranđelović, and Norbert Hölzel
Applied Vegetation Science, 2019, Volume 22, Number 2, Page 200
[4]
Joanna Rosińska and Ryszard Gołdyn
Knowledge & Management of Aquatic Ecosystems, 2018, Number 419, Page 1
[5]
Tongayi Mwedzi, Tapiwa G. Zimunya, Taurai Bere, Tawanda Tarakini, and Tinotenda Mangadze
International Review of Hydrobiology, 2017
[6]
Rajmund Skowron and Tomasz Jaworski
Bulletin of Geography. Physical Geography Series, 2017, Volume 12, Number 1
[7]
Joanna Rosińska, Michał Rybak, and Ryszard Gołdyn
Aquatic Botany, 2017, Volume 138, Page 45

Comments (0)

Please log in or register to comment.
Log in