Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 43, Issue 2

Issues

Larval development and settlement of the barnacle Amphibalanus amphitrite from the Red Sea: Influence of the nauplii hatching season

Ali Al-Aidaroos
  • Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O.Box 80207, Jeddah, 21589, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sathianeson Satheesh
  • Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, P.O.Box 80207, Jeddah, 21589, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-26 | DOI: https://doi.org/10.2478/s13545-014-0130-2

Abstract

Barnacle Amphibalanus amphitrite adults were collected from the Jeddah coast of the Red Sea during different seasons. The nauplii released by adults in autumn, winter, spring and summer were reared under laboratory conditions to know the larval development duration and settlement in relation to the hatching season. The nauplii reared during winter (11 days) and autumn (13 days) took longer to reach the cypris stage compared to nauplii reared in summer (6 days) and spring (7 days). The most successful settlement of larvae was observed in spring and summer and the least successful — in winter. The observations of gonads showed that summer and spring are the active breeding season for A. amphitrite in the Red Sea. The results of this study indicated that the nauplii hatching season plays a significant role in the larval development and settlement of barnacles in the Red Sea.

Keywords: Biofouling; Red Sea; barnacles; cirripede nauplii; cypris; larval settlement; marine invertebrates

  • [1] Al-Farawati, R. Al-Maradni, A. & Niaz, R.G. (2008). Chemical Characteristics (Nutrients, Fecal Sterols and Polyaromatic Hydrocarbons) of the Surface Waters for Sharm Obhur, Jeddah, Eastern Coast of the Red Sea. JKAU: Mar. Sci. 19: 95–119. Google Scholar

  • [2] Al-Farawati, R. 2010. Environmental Conditions of the Coastal Waters of Southern Corinche, Jeddah, Eastern Red Sea: Physico-chemical Approach. Aust. J. Basic Appl. Sci. 4: 3324–3337. Google Scholar

  • [3] Anil, A. C. (1991). Studies on macrofouling ecology of cirripedes in Hamana Bay (Japan). Ph.D. thesis, Faculty of Agriculture, University of Tokyo Google Scholar

  • [4] Anil, A.C. Chiba, K. Okamoto K. & Kurokura, H. (1995). Influence of temperature and salinity on larval development of Balanus amphitrite: implications in fouling ecology. Mar. Ecol. Prog. Ser. 118: 159–166. http://dx.doi.org/10.3354/meps118159CrossrefGoogle Scholar

  • [5] Anil, A.C. & Kurian, J. (1996). Influence of food concentration, temperature and salinity on the larval development of Balanus amphitrite. Mar. Biol. 127: 115–124. http://dx.doi.org/10.1007/BF00993651CrossrefGoogle Scholar

  • [6] Anil, A.C. Khandeparker, L. Desai, D.V. Baragi, L.V. & Gaonkar, C.A. (2010). Larval development, sensorymechanisms and physiological adaptations in acorn barnacles with special reference to Balanus amphitrite. J. Exp. Mar. Biol. Ecol. 392: 89–98. Doi::10.1016/j.jembe.2010.04.012 http://dx.doi.org/10.1016/j.jembe.2010.04.012CrossrefWeb of ScienceGoogle Scholar

  • [7] Arnsberg, A.J. (2001). Arthropoda, Cirripedia: The Barnacles. In: A.L. Shanks (Ed.), An identification guide to the larval marine invertebrates of the pacific northwest (pp. 156–175) 1st ed, Corvallis: Oregon State University Press. Google Scholar

  • [8] Barnes, H. & Barnes, M. (1975). The general biology of Verruca stroemia (O F Muller). V. Effect of feeding, temperature and light regime on breeding and moulting cycles. J. Exp. Mar. Biol. Ecol. 19:227–232. http://dx.doi.org/10.1016/0022-0981(75)90059-3CrossrefGoogle Scholar

  • [9] Begon, M. Harper, J. L. & Towsend, C. R. (1996). Ecology: individuals, populations and communities. Oxford: Blackwell Science. Google Scholar

  • [10] Brickner, I. Loya, Y. & Achituv, Y. (2010). Diverse life strategies in two coral-inhabiting barnacles (Pyrgomatidae) occupying the same host (Cyphastrea chalcidicum), in the northern Gulf of Eilat. J. Exp. Mar. Biol. Ecol. 392: 220–227. DoiDoi: 10.1016/j.jembe.2010.04.022 http://dx.doi.org/10.1016/j.jembe.2010.04.022Web of ScienceGoogle Scholar

  • [11] Clare, A.S. Freet, R.K. & McClary, Jr., M. (1994). On the antennular secretion of the cyprid of Balanus amphitrite, and its role as a settlement pheromone. J. Mar. Biol. Ass. U.K. 74: 243–250. http://dx.doi.org/10.1017/S0025315400035803CrossrefGoogle Scholar

  • [12] Dattesh, D.V. & Anil, A.C. (2005). Recruitment of the barnacle Balanus amphitrite in a tropical estuary: implications of environmental perturbation, reproduction and larval ecology. J. Mar.Biol. Assoc. U K. 85: 909–920. http://dx.doi.org/10.1017/S0025315405011884CrossrefGoogle Scholar

  • [13] Desai, D.V. Anil, A.C. & Venkat, K. (2006). Reproduction in Balanus Amphitrite Darwin (Cirripedia: Thoracica): influence of temperature and food concentration. Mar. Biol. 149: 1431–1441. http://dx.doi.org/10.1007/s00227-006-0315-3CrossrefGoogle Scholar

  • [14] Dhams, H.U. & Hellio, C. (2009). Laboratory bioassays for screening marine antifouling compounds. In: C. Hellio, & D.M.Y. Yebra (Eds.), Advances in marine antifouling coatings and technologies (pp. 275–307). Cambridge: Woodshead Publishing. http://dx.doi.org/10.1533/9781845696313.2.275CrossrefGoogle Scholar

  • [15] Edwards, A.J. & Head, S.M. (1987). Key Environments: Red Sea. Oxford: Pergamon Press. Google Scholar

  • [16] Fyhn, U.E.H. & Costlow, J.D. (1977). Histology and histochemistry of the ovary and oogenesis in Balanus amphitrite L. and B. eburneus Gould (Cirripedia, Crustacea). Biol. Bull. Mar. Biol.Lab. Woods Hole. 152:351–359. http://dx.doi.org/10.2307/1540423CrossrefGoogle Scholar

  • [17] Hellio, C. Marechal, J.P. Véron, B. Bremer, G. Clare, A.S. & Le Gal Y. (2004). easonal Variation of Antifouling Activities of Marine Algae from the Brittany Coast (France). Mar. Biotechnol. 6: 67–82. http://dx.doi.org/10.1007/s10126-003-0020-xCrossrefGoogle Scholar

  • [18] Hirota, H. Tomono, Y. & Fusetani, N. (1996).Terpenoids with Antifouling Activity against Barnacle Larvae from the Marine Sponge Acanthella cavernosa. Tetrahedron. 57: 2359–2368. http://dx.doi.org/10.1016/0040-4020(95)01079-3CrossrefGoogle Scholar

  • [19] Holm, E.R. McClary, M. & Rittschof, D. (2000). Variation in attachment of the barnacle Balanus amphitrite: sensation or something else? Mar. Ecol. Prog. Ser. 202: 153–162. http://dx.doi.org/10.3354/meps202153CrossrefGoogle Scholar

  • [20] Jarrett, J.N. (2003). Seasonal variation in larval condition and postsettlement performance of the barnacle Semibalanus balanoides. Ecology 84: 384–390. http://dx.doi.org/10.1890/0012-9658(2003)084[0384:SVILCA]2.0.CO;2CrossrefGoogle Scholar

  • [21] Kado, R. & Kim, M.H. (1996). Larval development of Octomeris sulcata Nilsson-Cantell (Cirripedia Thoracida: Chthamalidae) from Japan and Korea. Hydrobiologia 325: 65–76. http://dx.doi.org/10.1007/BF00023668CrossrefGoogle Scholar

  • [22] Khandeparker, L. Anil, A.C. & Raghukumar, S. (2002). Factors regulating the production of different inducers in Pseudomonas aeruginosa with reference to larval metamorphosis in Balanus amphitrite. Aquat. Microb. Ecol. 28: 37–54. http://dx.doi.org/10.3354/ame028037CrossrefGoogle Scholar

  • [23] Karande, A.A. (1965). On cirripede crustaceans (barnacles) an important fouling group in Bombay waters. Proceedings of Symposium on Crustacea. J. Mar. Biol. Assoc. India 4: 1945–1950. Google Scholar

  • [24] Leslie, H.M. Breck, E.N. Chan, F. Lubchenco, J. & Menge, B.A. (2005). Barnacle reproductive hotspots linked to nearshore ocean conditions. Proc. Nat. Acad. Sci. USA 102: 10534–10539. http://dx.doi.org/10.1073/pnas.0503874102CrossrefGoogle Scholar

  • [25] Lucas, M.I. Walker, G. Holland, D.L. & Crisp, D.J. (1979). An energy budget for the free-swimming and metamorphosis larvae of Balanus balanoides (Crustacea: Cirripedia). Mar. Biol. 55: 221–229. http://dx.doi.org/10.1007/BF00396822CrossrefGoogle Scholar

  • [26] Lucas, M.I. & Crisp, D.J. (1987). Energy metabolism of eggs during embryogenesis in Balanus balanoides. J. Mar. Biol. Assoc. UK 67: 27–54. http://dx.doi.org/10.1017/S0025315400026345CrossrefGoogle Scholar

  • [27] Morcos, S.A. (1970). Physical and chemical oceanography of the Red Sea. Oceanogr. Mar. Biol. Annu. Rev. 8: 73–202. Google Scholar

  • [28] Maréchal, J.-P. & Hellio, C. (2011) Antifouling activity against barnacle cypris larvae: Do target species matter (Amphibalanus amphitrite versus Semibalanus balanoides?. Int. Biodeter. Biodegr. 65: 92–101. doi: 10.1016/j.ibiod.2010.10.002 http://dx.doi.org/10.1016/j.ibiod.2010.10.002CrossrefWeb of ScienceGoogle Scholar

  • [29] Pechenik, J. A. & Cerulli, T. R. (1991). Influence of delayed metamorphosis on survival, growth, and reproduction of the marine polychaete Capitella sp. I. J. Exp. Mar. Biol. Ecol. 151:17–27. http://dx.doi.org/10.1016/0022-0981(91)90012-LCrossrefGoogle Scholar

  • [30] Pillay, K.K. & Nair, N.B. (1972). Reproductive biology of the sessile barnacle, Balanus amphitrite communis (Darwin), of the southwest coast of India. Indian J. Mar. Sci. 1:8–16. Google Scholar

  • [31] Qiu, J.W. & Qian, P.Y. (1997). Effects of food availability, larval source and culture method on larval development of Balanus amphitrite amphitrite Darwin: implications for experimental design. J. Exp. Mar. Biol. Ecol. 217: 47–61. http://dx.doi.org/10.1016/S0022-0981(97)00037-3CrossrefGoogle Scholar

  • [32] Qiu, J.W. & Qian, P.Y. (1999). Tolerance of the barnacle Balanus Amphitrite amphitrite to salinity and temperature stress: effects of previous experience. Mar. Ecol. Prog. Ser. 188: 123–132. http://dx.doi.org/10.3354/meps188123CrossrefGoogle Scholar

  • [33] Raitsos, D.E. Pradhan, Y. Brewin, R.J.W. Stenchikov, G. & Hoteit, I. (2013). Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea. PLoS ONE 8: e64909. doi:10.1371/journal.pone.0064909 http://dx.doi.org/10.1371/journal.pone.0064909CrossrefGoogle Scholar

  • [34] Rittschof, D. Branscomb, E. S. & Costlow, J. D. (1984). Settlement and behaviour in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J. Exp. Mar. Biol. Ecol. 82:131–146. http://dx.doi.org/10.1016/0022-0981(84)90099-6CrossrefGoogle Scholar

  • [35] Rittschof, D. Clare, A.S. Gerhart, D.J. Mary, A. & Bonaventura, J. (1992). Barnacle in vitro assays for biologically active substances: Toxicity and Settlement inhibition assays using mass cultured Balanus amphitrite Amphitrite Darwin. Biofouling. 6: 115–12 http://dx.doi.org/10.1080/08927019209386217CrossrefGoogle Scholar

  • [36] Satheesh, S. & Wesley, S.G. (2008). Seasonal variability in recruitment of macrofouling community in Kudankulam waters, east coast of India. Estuar. Coast. Shelf Sci. 79: 518–524. Doi: 10.1016/j.ecss.2008.05.008 http://dx.doi.org/10.1016/j.ecss.2008.05.008Web of ScienceCrossrefGoogle Scholar

  • [37] Satheesh, S. & Wesley, S.G. (2009). Breeding biology of the barnacle Amphibalanus amphitrite (Crustacea: Cirripedia): Influence of environmental factors in a tropical coast. J. Mar. Biol. Assoc. UK. 89: 1203–1208. DOI: 10.1017/S0025315409000228 http://dx.doi.org/10.1017/S0025315409000228Web of ScienceCrossrefGoogle Scholar

  • [38] Satuito, C.G. Shimizu, K. Natoyama, K. Yamazaki, M. & Fusetani, N. (1996). Age-related settlement success by cyprids of the barnacle Balanus amphitrite, with special reference to consumption of cyprid storage protein. Mar. Biol. 127: 125–130. http://dx.doi.org/10.1007/BF00993652CrossrefGoogle Scholar

  • [39] Shaikh, E. A. Roff, J. C. & Dowidar, N M. (1986). Phytoplankton ecology and production in the Red Sea off Jiddah, Saudi Arabia. Mar. Biol. 92: 405–416. http://dx.doi.org/10.1007/BF00392681CrossrefGoogle Scholar

  • [40] Shalla, S.H.A. Ghobashy, A.F.A. & Hartnoll, R.G. (1995). Studies on the Barnacle Balanus amphitrite Darwin, 1854 (Cirripedia) from Lake Timsah in the Suez Canal. Crustaceana. 68: 503–517. http://dx.doi.org/10.1163/156854095X01664CrossrefGoogle Scholar

  • [41] Tapia, F.J. & Navarrete, S.A. (2010). Spatial patterns of barnacle settlement in central Chile: Persistence at daily to inter-annual scales relative to the spatial signature of physical variability J. Exp. Mar. Biol. Ecol. 392: 151–159. Doi: 10.1016/j.jembe.2010.04.031 http://dx.doi.org/10.1016/j.jembe.2010.04.031CrossrefWeb of ScienceGoogle Scholar

  • [42] Thiyagarajan, V. Venugopalan, V.P. Subramoniam, T. & Nair, K.V.K. (1996). Laboratory rearing of barnacle larvae (Balanus reticulatus) using Chaetocerous wigham as food. Indian J. Mar. Sci. 25: 365–367. Google Scholar

  • [43] Thiyagarajan, V. Harder, T. & Qian, P-Y. (2002). Effect of the physiological condition of cyprids and laboratory-mimicked seasonal conditions on the metamorphic successes of Balanus amphitrite Darwin (Cirripedia; Thoracica). J. Exp. Mar. Biol. Ecol. 274: 65–74. http://dx.doi.org/10.1016/S0022-0981(02)00182-XCrossrefGoogle Scholar

  • [44] Thiyagarajan, V. Hung, O.S. Chiu, J.M.Y. Wu, R.S.S. & Qian, P.Y. (2005). Growth and survival of juvenile barnacle Balanus amphitrite: interactive effects of cyprid energy reserve and habitat. Mar. Ecol. Prog. Ser. 299: 229–237. http://dx.doi.org/10.3354/meps299229CrossrefGoogle Scholar

  • [45] Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25:1–45. http://dx.doi.org/10.1111/j.1469-185X.1950.tb00585.xCrossrefGoogle Scholar

  • [46] Underwood, A.J. & Fairweather, P.G. (1989). Supply-side ecology and benthic marine assemblages. Trends Ecol. Evol. 4:16–20. http://dx.doi.org/10.1016/0169-5347(89)90008-6CrossrefGoogle Scholar

  • [47] Wong, K.W.K. Lane, A.C. Leung, P.T.Y. & Thiyagarajan, V. (2011). Response of larval barnacle proteome to CO2-driven seawater acidification. Comp. Biochem. Phys. D 6: 310–321. Google Scholar

  • [48] Yakovis, E.L. Artemieva, A.V. Fokin, M.V. Varfolomeeva, M.A. & Shunatova, N.N. (2013). Synchronous annual recruitment variation in barnacles and ascidians in the White Sea shallow subtidal 1999–2010. Hydrobiologia 706:69–79. DOI: 10.1007/s10750-012-1340-5 http://dx.doi.org/10.1007/s10750-012-1340-5CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2014-06-26

Published in Print: 2014-06-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 43, Issue 2, Pages 170–177, ISSN (Online) 1897-3191, DOI: https://doi.org/10.2478/s13545-014-0130-2.

Export Citation

© 2014 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. A. Ba-Akdah, S. Satheesh, and A. A. Al-Sofyani
Journal of the Marine Biological Association of the United Kingdom, 2016, Volume 96, Number 7, Page 1457
[2]
Samarth Bhargava, Serina Siew Chen Lee, Lynette Shu Min Ying, Mei Lin Neo, Serena Lay-Ming Teo, and Suresh Valiyaveettil
ACS Sustainable Chemistry & Engineering, 2018
[3]
Ali M. Al-Aidaroos, S. Satheesh, and Reny P. Devassy
International Biodeterioration & Biodegradation, 2017, Volume 117, Page 190

Comments (0)

Please log in or register to comment.
Log in