Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 43, Issue 3

Issues

Geostatistical methods for estimation of toxicity of marine bottom sediments based on the Gdańsk Basin area

Maria Witt
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Kobusińska
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Maciak
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elżbieta Niemirycz
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-29 | DOI: https://doi.org/10.2478/s13545-014-0139-6

Abstract

Toxicity assessment of environmental compartments, in particular sediments as a highly complex matrix, provides a more direct way to assess potential adverse effects of pollutants present in a sample in contrast to chemical analysis estimating only a quantitative level of xenobiotics. Interactions between chemicals, formations of derivatives and the influence of chemical properties of sediments such as the organic matter content causing the intensified sorption of hydrophobic pollutants suggest that a traditional approach to the sediment quality, based only on chemical analysis may be insufficient. The presented study describes the vertical and horizontal variability of toxicity of Gdańsk Basin sediments. Based on 128 surface sediments samples and using geostatistical methods, a prediction map for the EC50 parameter was created. This allowed the evaluation of the toxicity of the surface sediment layer at any selected point of the study area. The applied analysis can be functional for many other locations worldwide. In the present study, the hypothesis about the location of toxic sediments in the vicinity of Gdańsk Deep, outer Puck Bay and close to Vistula River mouth was further confirmed.

Keywords: toxicity; bottom sediment; Microtox; geostatistical analysis; ordinary kriging

  • [1] ASTM (American Society for Testing and Materials). (2004). Standard Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium. ASTM D5660-96. USA. Google Scholar

  • [2] Azur Environmental (1998). Microtox Basic Solid-phase Test (Basic SPT). Carlsbad, CA, USA. Google Scholar

  • [3] Bolałek J., Graca B. & Burska D. (2011a). Skład chemiczny wód interstycjalnych. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8 Google Scholar

  • [4] Bolałek J., Graca B. & Burska D. (2011b), Gazy w osadach Morza Bałtyckiego, in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 320–325), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8 Google Scholar

  • [5] Calace N., Ciardullo S., Petronio B., Pietrantonio M., Abbodanzi F., Campisi T. & Cardellicchio N. (2005). Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchemical Journal. 79: 243–248.. DOI: 10.1016/j.microc.2004.10.005. http://dx.doi.org/10.1016/j.microc.2004.10.005CrossrefGoogle Scholar

  • [6] Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T.A., Guerra R. & Iacondini A. (2005). Effect of sediment turbidity and color on light output measurement for Microtoxs Basic Solid-Phase Test. Chemosphere 60: 9–15. DOI: 10.1016/j.chemosphere.2004.12.052. http://dx.doi.org/10.1016/j.chemosphere.2004.12.052CrossrefGoogle Scholar

  • [7] Chen Y.X, Chen H.L, Xu Y.T & Shen M.W. (2004). Irreversible sorption of pentachlorophenol to sediment:experimental observations. Environment International 30(1):31–37. DOI: 10.1016/S0160-4120(03)00145-4 http://dx.doi.org/10.1016/S0160-4120(03)00145-4CrossrefGoogle Scholar

  • [8] Cinti D., Poncia P.P., Procesi M., Galli G. & Quattrocchi F. (2013). Geostatistical techniques application to dissolved radon hazard mapping: An example from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (central Italy). Applied Geochemistry 35: 312–324. DOI: 10.1016/j.apgeochem.2013.05.005. http://dx.doi.org/10.1016/j.apgeochem.2013.05.005CrossrefGoogle Scholar

  • [9] Cleveland L., Litte E.E., Petty J.D., Johnson B.T., Lebo J.A., Orazio C.E., Dionne J. & Crocket A. (1997). Toxicological and chemical screening of Antarctica sediments: Use of whole sediment toxicity testes Microtox, Mutatox and Semipermeable Membrane. Marine Pollution Bulletin 34: 194–202. ISSN: 0025-326X. http://dx.doi.org/10.1016/S0025-326X(96)00088-4Google Scholar

  • [10] Coya B., Marañón E. & Sastre H. (2000). Ecotoxicity assessment of slag generated in the process of recycling lead from waste batteries. Resources Conservation and Recycling 29: 291–300. ISSN: 0921-3449. DOI: 10.1016/S0921-3449(00)00054-9. http://dx.doi.org/10.1016/S0921-3449(00)00054-9CrossrefGoogle Scholar

  • [11] Coz A., Rodríguez-Obeso O., Alonso-Santurde R., Álvarez-Guerra M., Andrés A., Viguri J.R., Mantzavinos D. & Kalogerakis N. (2008). Toxicity bioassays in core sediments from the Bay of Santander, northern Spain. Environmental Research 106: 304–312. DOI: 10.1016/j.envres.2007.05.009. http://dx.doi.org/10.1016/j.envres.2007.05.009CrossrefGoogle Scholar

  • [12] Casado-Martínez M.C., Campisi T., Díaz A., Lo Re R., Obispo R., Postma J.F., Riba I., Sneekes A.C., Buceta J.L. & DelValls T.A. (2006). Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. II. Bioluminescence inhibition test for rapid sediment toxicity assessment. Ciencias Marinas 32: 129–138. ISSN: 0185-3880. Google Scholar

  • [13] Graca B. & Burska D. (2011). Czynniki kształtujące zawartość węgla organicznego i substancji biogenicznych w osadach. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8 Google Scholar

  • [14] Granberg M.E., Gunnarsson J..S, Hedman J.E., Rosenberg R. & Jonsson P. (2008). Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environ Sci Technol. 42(4): 1058–65. http://dx.doi.org/10.1021/es071607jGoogle Scholar

  • [15] Hedman J.E. (2008). Fate of contaminants in Baltic Sea sediment ecosystems: the role of bioturbation. Doctoral Thesis. Stockholm University. Google Scholar

  • [16] Jerosch K. (2013). Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Shelf based on grain size data. Journal of Marine Systems 127: 5–13. DOI: 10.1016/j.jmarsys.2012.02.013. http://dx.doi.org/10.1016/j.jmarsys.2012.02.013CrossrefGoogle Scholar

  • [17] Johanson K., ver Hoef J.M. & Krivoruchko K. (2003). ArcGIS 9. Using ArcGIS Geostatistical Analyst. ESRI. DOI 10.1007/s00704-009-0140-y CrossrefGoogle Scholar

  • [18] Keddy C.J., Greene J.C. & Bonnell M.A. (1995). Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicology and Environmental Safety 30: 221–251. ISSN: 0147-6513. http://dx.doi.org/10.1006/eesa.1995.1027Google Scholar

  • [19] Kobusińska M., Skauradszun M. & Niemirycz E. (2014). Factors determining the accumulation of pentachlorophenol — a precursor of dioxins in bottom sediments of the Gulf of Gdańsk (Baltic Sea). Oceanological and Hydrobiological Studies 43(2): 154–164. DOI:10.2478/S13545-014-0128-9. http://dx.doi.org/10.2478/s13545-014-0128-9CrossrefGoogle Scholar

  • [20] Konat J. & Kowalewska G. (2001). Polychlorinated biphenyls PCBs in sediments of the southern Baltic Sea trends and fate. The Science of the Total Environment 280: 1–15. DOI: 10.1016/S0048-9697(01)00785-9. http://dx.doi.org/10.1016/S0048-9697(01)00785-9CrossrefGoogle Scholar

  • [21] Kwan K.K. & Dutka B.J. (1995), Comparative assessment of two Solid-Phase toxicity bioassays: The Direct Sediment Toxicity Testing Procedure (DSTTP) and Microtox Solid Phase Test (SPT). Bulletin of Environmental Contamination and Toxicology 55: 338–346. DOI: 10.1007/BF00206670. http://dx.doi.org/10.1007/BF00206670CrossrefGoogle Scholar

  • [22] Lahr J., Maas-Diepeveen J.L., Stuijfzand S.C., Leonards P.E.G., Druke J.M., Lucker S., Espeldoorn A., Kerkum L.C.M., van Stee L.L.P. & Hendriks A.J. (2003). Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants? Water Research 37: 1691–1710.. DOI: 10.1016/S0043-1354(02)00562-6. http://dx.doi.org/10.1016/S0043-1354(02)00562-6CrossrefGoogle Scholar

  • [23] Larsson, P., Andersson, A., Bromam, D., Nordback, J. & Lundberg, E. (2000). Persistent organic pollutants (POPs) in the pelagic systems. Ambio 29(4): 202–209. DOI: 10.1579/0044-7447-29.4.202. CrossrefGoogle Scholar

  • [24] Łukawska-Matuszewska K., Burska D. & Niemirycz E. (2009). Toxicity assessment by Microtox in sediments, pore waters and sediment saline elutriates in the Gulf of Gdańsk (Baltic Sea). Clean-Soil, Air, Water 37: 592–598. DOI: 10.1002/clen.200900021 http://dx.doi.org/10.1002/clen.200900021CrossrefGoogle Scholar

  • [25] Macken A., Giltrap M., Foley B., McGovern E., McHugh B. & Davoren M. (2008). An integrated approach to the toxicity assessment of Irish marine sediments: Validation of established marine bioassays for the monitoring of Irish marine sediments. Environment International 34: 1023–1032. DOI: 10.1016/j.envint.2008.08.013. ISSN: 0160-4120. http://dx.doi.org/10.1016/j.envint.2008.03.005CrossrefGoogle Scholar

  • [26] Mamindy-Pajany Y., Geret F., Roméo M., Hurel Ch. & Marmier N. (2012). Ex situ remediation of contaminated sediments using mineral additives: Assessment of pollutant bioavailability with the Microtox solid phase test. Chemosphere 86:1112–1116. DOI: 10.1016/j.chemosphere.2011.12.001. http://dx.doi.org/10.1016/j.chemosphere.2011.12.001CrossrefGoogle Scholar

  • [27] Morales-Caselles C., Kalman J., Micaelo C., Ferreira A.M., Vale C., Riba I. & DelValls T.A. (2008). Sediment contamination, bioavailability and toxicity of sediments affected by an acute oil spill: four years after the sinking of the tanker Prestige. Chemosphere 71: 1207–1213. DOI: 10.1016/j.chemosphere.2007.12.013. http://dx.doi.org/10.1016/j.chemosphere.2007.12.013CrossrefGoogle Scholar

  • [28] Morales-Caselles C., Riba I. & Ángel DelValls T. (2009). A weight of evidence approach for quality assessment of sediments impacted by an oil spill: The role of a set of biomarkers as a line of evidence. Marine Environmental Research 67: 31–37. DOI: 10.1016/j.marenvres.2008.10.003. http://dx.doi.org/10.1016/j.marenvres.2008.10.003CrossrefGoogle Scholar

  • [29] Niemirycz E., Nitchthauser J., Staniszewska M., Nałęcz-Jawacki G. & Bolałek J. (2007). The Microtox biological test of surface waters and sediment in Poland. Oceanological and Hydrobiological Studies 36: 151–163. DOI: 10.2478/v10009-007-0030-5. http://dx.doi.org/10.2478/v10009-007-0030-5CrossrefGoogle Scholar

  • [30] Niemirycz E. (2008). Halogenated organic compounds in the environment in relation to climate change. Warsaw: Environmental Monitoring Library. Google Scholar

  • [31] Niemirycz E. (2011). Dopływ substancji chemicznych rzekami, in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 91–106). Warszawa: PIG-PIB. ISBN 978-83-7538-813-8. Google Scholar

  • [32] Niemirycz E. & Jankowska D. (2011). Concentration and profiles of PCDD/Fs in sediments of major polish rivers and the Gdańsk Basin — Baltic Sea. Chemosphere 85: 525–532. DOI: 10.1016/j.chemosphere.2011.08.014. http://dx.doi.org/10.1016/j.chemosphere.2011.08.014CrossrefGoogle Scholar

  • [33] Park K. & Hee S.Q. (2001). Effect of dust on the viability of Vibrio fischeri in the Microtox test. Ecotoxicology and Environmental Safety 50: 189–195. DOI: 10.1006/eesa.2001.2109. http://dx.doi.org/10.1006/eesa.2001.2109CrossrefGoogle Scholar

  • [34] Parsons T.R., Maaita Y., Lalli, C.M. (1985). A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford. Google Scholar

  • [35] Pazdro K. (2004). Persistent organic pollutants in sediments from the Gulf of Gdańsk. Annual Set the Environment Protection. 6: 63–76. Google Scholar

  • [36] Pedersen E., Bjornstad E., Andersen H.V., Kjolholt J. & Poll C. (1998). Characterization of sediments from Copenhagen Harbour by use of biotestes. Water Science Technology 37: 233–240. ISSN: 0273-1223. http://dx.doi.org/10.1016/S0273-1223(98)00203-0Google Scholar

  • [37] Piccini Ch., Marchetti A. & Francaviglia R. (2014). Estimation of soil organic matter by geostatistical methods: Use of auxiliary information in agricultural and environmental assessment. Ecological Indicators 36: 301–314. DOI: 10.1016/j.ecolind.2013.08.009. http://dx.doi.org/10.1016/j.ecolind.2013.08.009CrossrefGoogle Scholar

  • [38] Renz J.R. & Forster S. (2013). Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea. Limnol. Oceanogr. 58(6): 2046–2058. DOI: 10.4319/lo.2013.58.6.2046. http://dx.doi.org/10.4319/lo.2013.58.6.2046CrossrefGoogle Scholar

  • [39] Ricking M., Beckman E. & Svenson A. (2002) PAHs and Microtox acute toxicity in contaminated sediments in Swede. J. Soils Sed. 2(3):129–136. DOI: 10.1007/BF02988464. http://dx.doi.org/10.1007/BF02988464CrossrefGoogle Scholar

  • [40] Sahebjalal E. (2012). Application of Geostatistical Analysis for Evaluating Variation in Groundwater Characteristics. World Applied Sciences Journal 18(1): 135–141. DOI: 10.5829/idosi.wasj.2012.18.01.664 CrossrefGoogle Scholar

  • [41] Salizzato M., Pavoni B., Ghirardini A.V. & Ghetti P.F. (1998). Sediment toxicity measured using Vibrio fischeri related to the concentrations of organic (PCBs, PAHs) and inorganic (metals, sulphur) pollutants. Chemosphere 36: 2949–2968. DOI: 10.1016/S0045-6535(98)00001-0. http://dx.doi.org/10.1016/S0045-6535(98)00001-0CrossrefGoogle Scholar

  • [42] Serafim A., Company R., Lopes B., Rereira C., Cravo A., Fonseca V.F., França S., Bebianno M.J. & Cabral H.N. (2013). Evaluation of sediment toxicity in different Portuguese estuaries: Ecological impact of metals and polycyclic aromatic hydrocarbons. Estuarine, Costal and Shelf Science 130: 30–41. DOI: 10.1016/j.ecss.2013.04.018. http://dx.doi.org/10.1016/j.ecss.2013.04.018CrossrefGoogle Scholar

  • [43] Smith J. & Smith P. (2007). Introduction to Environmental Modelling. New York: Oxford University Press. Google Scholar

  • [44] Sundqvist K. (2009). Sources of dioxins and other POPs to the marine environment: Identification and apportionment using pattern analysis and receptor modeling. Doctoral Thesis. Umeå University. Google Scholar

  • [45] Svenson A., Edsholt E., Ricking M., Remberger M. & Röttorp J. (1996). Sediment contaminats and Microtox Toxicity Tested in a Direct Contact Exposure Test. Environmental Toxicology and Water Quality. An International Journal 11: 293–300. DOI: 10.1002/(SICI)1098-2256(1996)11:4〈293::AID-TOX2〉3.0.CO;2-4 CrossrefGoogle Scholar

  • [46] Szefer P. (2002). Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science. B.V., Amsterdam. Google Scholar

  • [47] Szymczak E., Skauradszun M. & Niemirycz E. (2013). Litologiczne uwarunkowania toksyczności powierzchniowych osadów dennych terenów ujściowych cieków Zatoki Gdańskiej. International Scientific Conference „Dioxins in the environment — science for health”. Google Scholar

  • [48] Świderska-Bróż M. (1987). Zjawiska sorpcji w wodach naturalnych oraz procesach oczyszczania wód. Ochrona środowiska. Wydawnictwo PZITS 521-2/3(32–33): 9–14 Google Scholar

  • [49] Urbański J. (2012). GIS w badaniach przyrodniczych. Gdańsk: Wydawnictwo Uniwersytetu Gdanskiego. Google Scholar

  • [50] Urbański J. (2007). Fizyczna typologia dna Zatoki Gdańskiej. Atlas cyfrowy. Pracownia Geoinformacji, Zakład Oceanografii Fizycznej, Instytut Oceanografii UG. Google Scholar

  • [51] Uścinowicz Sz. (2011). Współczesne osady powierzchniowe i procesy sedymentacyjne. in: Uścinowicz Sz. (Eds.), Geochemia osadów powierzchniowych Morza Bałtyckiego (pp. 309–319), Warszawa: PIG-PIB. ISBN 978-83-7538-813-8 Google Scholar

  • [52] Van den Brink P.J. & Kater B.J. (2006). Chemical and biological evaluation of sediments from the Wadden Sea, the Netherlands. Ecotoxicology 15: 451–460. DOI: 10.1016/j.trac.2009.03.006. http://dx.doi.org/10.1007/s10646-006-0080-6CrossrefGoogle Scholar

  • [53] Vigano L., Arillo A., Buffagni A., Camusso M., Ciannarella R., Crosa G., Falugi C., Galassi S., Guzzella L., Lopez A., Mingazzini M., Pagnotta R., Patrolecco L., Tartari G. & Valsecchi S. (2003). Quality assessment of bed sediments of the Po River (Italy). Water Research 37: 501–518. DOI: 10.1016/S0043-1354(02)00109-4. http://dx.doi.org/10.1016/S0043-1354(02)00109-4CrossrefGoogle Scholar

  • [54] Viguri J., Irabien M.J., Yusta I., Soto J., Gómez J., Rodríguez P., Martínez M., Irabien J.A. & Coz A. (2007). Physico-chemical and toxicological characterization of the historic estuarine sediments: a multidisciplinary approach. Environment International 33: 436–444. DOI:10.1016/j.envint.2006.10.005 http://dx.doi.org/10.1016/j.envint.2006.10.005CrossrefGoogle Scholar

  • [55] Webster R. & Oliver M.A. (2001). Geostatistics for Environmental Scientists. Wiley & Sons Ltd. Chichester. Google Scholar

  • [56] Zalewski M. (2011). Odpływ Wisłą związków azotu i fosforu na tle zmian produkcji pierwotnej rejonu Basenu Gdańskiego. Doctoral Thesis. University of Gdansk. Google Scholar

  • [57] Zhang J & He M. (2013). Effect of dissolved organic matter on sorption and desorption of phenanthrene onto black carbon. Journal of Environmental Sciences 25(12):2378–2383. DOI: 10.1016/S1001-0742(12)60328-3 http://dx.doi.org/10.1016/S1001-0742(12)60328-3CrossrefGoogle Scholar

About the article

Published Online: 2014-10-29

Published in Print: 2014-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 43, Issue 3, Pages 247–256, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-014-0139-6.

Export Citation

© 2014 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Joanna Maciak, Krzysztof Lewandowski, and Elżbieta Niemirycz
Oceanological and Hydrobiological Studies, 2016, Volume 45, Number 3
[2]
Agnieszka Baran, Marek Tarnawski, and Tomasz Koniarz
Environmental Science and Pollution Research, 2016, Volume 23, Number 17, Page 17255

Comments (0)

Please log in or register to comment.
Log in