Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 43, Issue 3


Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and pentachlorophenol (PCP) in bottom sediments of the Port of Gdansk

Krzysztof Lewandowski
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Witt
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Kobusińska
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elżbieta Niemirycz
  • Department of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378, Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-29 | DOI: https://doi.org/10.2478/s13545-014-0146-7


Combustion processes are considered to be the main source of the dioxin emission in the Baltic region. Pentachlorophenol (PCP) and its derivatives, pentachlorophenyl laurate (PCPL) and sodium pentachlorophenate (NaPCP) are known as precursors of dioxins. The research was conducted to obtain the first data on the concentration of PCDD/Fs and PCP in the bottom sediments of the Port of Gdansk. Toxicity (the Microtox® test) as well as several sediment parameters have been examined.

In the surface layer of bottom sediments from the Port of Gdansk, all congeners of PCDD/Fs have been detected using GC-MS/MS. The highest concentration was obtained for OCDD (224.0–271.0 pg g−1 d.w.) and HpCDD (51.0–36.0 pg g−1 d.w.). The content of ΣPCDDs prevailed over ΣPCDFs. This may indicate that anthropogenic pollution from the land-based thermal sources has the strongest impact on the concentration of dioxins in the port sediments. The concentration of 17 dioxin congeners (WHO-TEQ) did not exceed the probable effect level (PEL) of 21.5 pg TEQ g−1 d.w. The concentration of PCP ranged from bellow the LOD (< 0.85 ng g−1 d.w.) to 12.4 ng g−1 d.w.

The positive correlation between toxicity and physico-chemical properties of the analyzed bottom sediments confirms that these parameters are important in terms of environment contamination.

Keywords: Port of Gdansk; bottom sediments; organochlorine contaminants; profile of the dioxin congeners; toxicity; Microtox®

  • [1] ACTIA Forum (2012). Assessment of the impact of sea ports of Gdansk and Gdynia on the socio-economic of Pomerania. Gdynia: ACTIA Forum. (In Polish) Google Scholar

  • [2] Assmuth T. & Jalonen P. (2005). Risks and management of dioxin-like compounds in Baltic Sea fish: an integrated assessment. TemaNord 2005: 568. Nordic Council of Ministers, Copenhagen. Google Scholar

  • [3] Azur Environmental (1998). Microtox acute toxicity BSPT and Screening Test Procedures. Carlsbad, CA, USA. Google Scholar

  • [4] Bartnicki, J., Gusev, A., Aas, W., Valiyaveetil S. & Nyiri A. (2013). Atmospheric Supply of Nitrogen, Lead, Cadmium, Mercury and Dioxins/Furans to the Baltic Sea in 2013. EMEP Centres Joint Report for HELCOM, Oslo. Google Scholar

  • [5] Bergqvist, P.-A., Tysklind, M., Marklund, S., Aberg, A., Sundqvist, K., Naslund, M., Rosen, I., Tsytsik, P., Malmstrom H. & Cato I. (2005). Inventory of emission sources for inadvertently formed compounds: PCDD/F, PCB and HCB. Environmental Chemistry MK 2005: 01, Umea University, Umea, Sweden. (In Swedish) Google Scholar

  • [6] Bergqvist, P.-A., Bergek, S., Hallback, H., Rappe C. & Slorach S.A. (1989). Dioxins in cod and herring from the seas around Sweden. Chemosphere 19(1–6): 513–516. http://dx.doi.org/10.1016/0045-6535(89)90361-5CrossrefGoogle Scholar

  • [7] Blott S. J. & Pye K. (2001). GRADISTAT: a graine size distribution and statistics package for the anlysis of unconsolidated sediments. Earth Surf. Process. Landforms 26(11): 1237–1248. DOI: 10.1002/esp.261. http://dx.doi.org/10.1002/esp.261CrossrefGoogle Scholar

  • [8] Borysiewicz M. (2008). Pentachlorophenol, Dossier prepared in support of a proposal of pentachlorophenol to be considered as a candidate for inclusion in the Annex I to the Protocol to the 1979 Convention on Long-Range Transboundary Air Pollution on Persistent Organic Pollutants (LRTAP Protocol on POPs). Institute of Environmental Protection, Warsaw, Poland. Google Scholar

  • [9] Canadian Council of Ministers of the Environment. (2001). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Polychlorinated dioxins and furans (PCDD/Fs). Winnipeg: Canadian Environmental Quality Guidelines. Google Scholar

  • [10] Dembska, G. (2003). Trace metals in the bottom sediments of the Port of Gdansk. Unpublished doctoral dissertation, University of Gdańsk, Poland. (In Polish) Google Scholar

  • [11] Dz. U., Item 21. (2013). The Act on Waste of the 14th December 2012. Google Scholar

  • [12] Dz. U. No. 22, Item 166. (2006).The Regulation of the Minister of Transport and Construction of the 26th January 2006 specifying the detailed terms and conditions, the necessary data and procedures for issuing permits to discharge the dredged material into the sea and dumping of wastes or other matter into the sea. Google Scholar

  • [13] Dz. U. No. 112, Item 1206. (2001).The Regulation of the Minister of Environment of the 27th September 2001 on wastes catalog. Google Scholar

  • [14] Everaert K. & Baeyens J. (2002). The formation and emission of dioxins in large scale thermal processes. Chemosphere 46: 439–448. http://dx.doi.org/10.1016/S0045-6535(01)00143-6CrossrefGoogle Scholar

  • [15] HELCOM (2010). Hazardous substances in the Baltic Sea — An integrated thematic assessment of hazardous substances in the Baltic Sea. Balt. Sea Environ. Proc. No. 120B. Google Scholar

  • [16] HELCOM (1992). Helsinki Convention-Article 11 of the Helsinki Convention on the protection of the marine environment of the Baltic Sea area. Helsinki. Google Scholar

  • [17] Hughes, B.J., Forsell J.H., Sleight S.D., Kuo C. & Shull L.R. (1985). Assessment of pentachlorophenol toxicity in newborn calves: clinicopathology and tissue residues. J Anim Sci 61(6): 1587–1603. Google Scholar

  • [18] Isosaari, P., Kankaanpaa, H., Mattila, J., Kiviranta, H., Verta, M., et al. (2002). Spatial distribution and temporal accumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in the Gulf of Finland. Environmental Science and Technology 36: 2560–2565. http://dx.doi.org/10.1021/es0158206CrossrefGoogle Scholar

  • [19] Isosaari, P., Kohonen, T., Kiviranta, H., Tuomisto J. & Vartiainen T. (2000). Assessment of levels, distribution, and risks of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of a vinyl chloride monomer production plant. Environmental Science and Technology 34: 2684–2689. http://dx.doi.org/10.1021/es991311gCrossrefGoogle Scholar

  • [20] Kjeller L.-O. & Rappe C. (1995). Time trends in levels, patterns, and profiles for polyhlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a sediment core from the Baltic Proper. Environmental Science and Technology 29: 346–355. http://dx.doi.org/10.1021/es00002a010CrossrefGoogle Scholar

  • [21] Koistinen, J., Stenman, O., Haahti, H., Suonpera M. & Paasivirta J. (1997). Polychlorinated diphenyl ethers, dibenzo-p-dioxins, dibenzofurans and biphenyls in Seals and sediment from the Gulf of Finland. Chemosphere 35(6): 1249–1269. http://dx.doi.org/10.1016/S0045-6535(97)00212-9CrossrefGoogle Scholar

  • [22] Koistinen, J., Paasivirta, J., Suonpera M. & Hyvarinen H. (1995). Contamination of pike and sediment from the Kymijoki River by PCDEs, PCDDs, and PCDFs: content and patterns compared to pike and sediment from the Bothnian Bay and Seals from Lake Saimaa. Environmental Science and Technology 29: 2541–2547. http://dx.doi.org/10.1021/es00010a013CrossrefGoogle Scholar

  • [23] Korhonen, M., Verta, M., Salo S. & Vuorenmaa J. (2006). The deposition of PCDD/Fs in Southern Finland (Manuscript). Google Scholar

  • [24] Kwan K. & Dutka B. (1995). Comparative assessment of two solid-phase toxicity bioassays: the direct sediment toxicity testing procedure (DSTTP) and microtox solid phase test (SPT). Bulletin of Environmental Contamination and Toxicology 55: 338–346. DOI:10.1007/BF00206670. http://dx.doi.org/10.1007/BF00206670CrossrefGoogle Scholar

  • [25] Łęczyński L. & Szymczak E. (2010). Physical properties of sediments. In Bolałek J. (Eds.), Physical, biological and chemical study of marine bottom sediments. Gdańsk: Wydawnictwo Naukowe Uniwersytetu Gdańskiego. (In Polish) Google Scholar

  • [26] Łukawska-Matuszewska K., Burska D. & Niemirycz E. (2009). Toxicity Assessment by Microtoxm in sediments, pore waters and sediment saline elutriates in the Gulf of Gdansk (Baltic Sea). Clean 37(7): 592–598. DOI:10.1002/clen.200900021. CrossrefGoogle Scholar

  • [27] Majewski, A. (1994). The natural environmental conditions of the Gulf of Gdansk and its peripherys. In Błażejowski J. & Schuller D. (Eds.), Pollution and restoration of the Gulf of Gdansk, Gdyni- seminar materials (35–42). Gdańsk: Wydawnictwo Naukowe Uniwersytetu Gdańskiego. (In Polish) Google Scholar

  • [28] Masunaga, S., Takasuga T. & Nakanishi J. (2001). Dioxin and dioxin-like PCB impurities in some Japanese agrochemical formulations. Chemosphere 44: 873–885. http://dx.doi.org/10.1016/S0045-6535(00)00310-6CrossrefGoogle Scholar

  • [29] Matczak M. & Ołdakowski B. (2011). Polish Seaports in 2010 — Summary and future perspectives. Gdynia: ACTIA Forum. (In Polish) Google Scholar

  • [30] Muir J. & Eduljee G. (1999). PCP in freshwater and marine environment of the European Union. The Science of the Total Environment 236: 41–56. ISSN:0048-9697. http://dx.doi.org/10.1016/S0048-9697(99)00281-8CrossrefGoogle Scholar

  • [31] Naf, C., Broman, D., Papakosta, O., Rolff, C., Zeburh, Y., et al. (1997). Ackumulation och fordelning av miljo gifter i Bottniska Viken — Naringsva vsprojektet. Stockholm, Stockholms Universitet. (In Swedish) Google Scholar

  • [32] Nascimento, N. R., Nicola, S. M. C., Rezende M. O. O., Oliveira T. A. & Öberg G. (2004). Pollution by hexachlorobenzene and pentachlorophenol in the coastal plain of São Paulo state. Geoderma 121:221–232. DOI: http://dx.doi.org/10.1016/j.geoderma.2003.11.008. http://dx.doi.org/10.1016/j.geoderma.2003.11.008CrossrefGoogle Scholar

  • [33] NewFields, Infometrix & Glass G. L. (2013). Port Angeles Harbor Sediment Dioxin Source Study. Washington. Google Scholar

  • [34] Niemirycz E. & Jankowska D. (2011). Concentrations and profiles of PCDD/Fs in sediments of major Polish rivers and the Gdansk Basin — Baltic Sea. Chemosphere 85: 525–532. DOI:10.1016/j.chemosphere.2011.08.014. http://dx.doi.org/10.1016/j.chemosphere.2011.08.014CrossrefGoogle Scholar

  • [35] Niemirycz E. & Staniszewska M. (2011). Development of the catchment area of the Baltic Sea. In Uścinowicz Sz. (Eds.), Geochemistry of surface sediments of the Baltic Sea. Warszawa: Państwowy Instytut Geologiczny — Państwowy Instytut Badawczy. (In Polish) Google Scholar

  • [36] Niemirycz, E., Nitchthauser, J., Staniszewska, M., Nałęcz-Jawacki G. & Bolałek J. (2007). The Microtox® biological test: Application in toxicity evaluation of surface waters and sediments in Poland. Oceanological and Hydrobiological Studies 36(4): 151–163. DOI:10.2478/v10009-007-0030-5. http://dx.doi.org/10.2478/v10009-007-0030-5CrossrefGoogle Scholar

  • [37] Pempkowiak, J. (1997). Outline of marine geochemistry. Gdańsk: Wydawnictwo Uniwersytetu Gdańskiego. (In Polish) Google Scholar

  • [38] Radke B., Łęczyński L., Wasik A., Namieśnik J. & Bolałek J. (2008). The content of butyl- and phenyltin derivatives in the sediment from the Port of Gdansk. Chemosphere 73: 407–414. DOI:10.1016/j.chemosphere.2008.05.020. http://dx.doi.org/10.1016/j.chemosphere.2008.05.020CrossrefGoogle Scholar

  • [39] Radke, B. (2007). The development and application of an optimized methodology for the determination of organotin compounds in sediments of the Port of Gdansk. Unpublished doctoral dissertation, University of Gdańsk, Poland. (In Polish) Google Scholar

  • [40] Sapota G., Dembska G., Bogdaniuk M. & Holm G. (2012). Environmental policy and legislation on dredged material in the Baltic Sea region — analysis. In Ocean Past, Present and Future — 2012 IEEE/OES Baltic International Symposium, Baltic 2012, 8–11 May 2012. Klaipeda, Lithuania: IEEE. Google Scholar

  • [41] Sawicki J., Nałęcz-Jarecki G., Mankiewicz-Boczek J., Izydorczyk K., Sumorok B., et al. (2007). A comprehensive ecotoxicological analysis of surface waters. Warszawa: Zakład Badania Środowiska Akademii Medycznej. (Project MNiI nr 2 P05F 056 28 executed in years 2005–2007. (In Polish) Google Scholar

  • [42] Silva, P. V., Silva, A. R. R., Mendo S. & Loureiro S. (2014). Toxicity of tributyltin (TBT) to terrestrial organisms and its species sensitivity distribution. Science of the Total Environment 466–467: 1037–1046. http://dx.doi.org/10.1016/j.scitotenv.2013.08.002. http://dx.doi.org/10.1016/j.scitotenv.2013.08.002CrossrefGoogle Scholar

  • [43] Staniszewska, M., Burska, D., Sapota, G., Bogdaniuk, M., Borowiec, K., et al. (2011). The relationship between the concentrations and distribution of organic pollutants and black carbon content in benthic sediments in the Gulf of Gdańsk, Baltic Sea. Marine Pollution Bulletin 62: 1464–1475. DOI:10.1016/j.marpolbul.2011.04.013. http://dx.doi.org/10.1016/j.marpolbul.2011.04.013CrossrefGoogle Scholar

  • [44] Stockholm Convention. (2001). The conference of plenipotentiaries on the adoption and signing of the Stockholm Convention on persistent organic pollutants. Retrived February 17, 2014, from http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx Google Scholar

  • [45] Stockholm Convention. (2009). The nine new POPs under the Stockholm Convention. Retrived February 17, 2014, from http://chm.pops.int/Implementation/NewPOPs/TheNewPOPs/tabid/672/Default.aspx Google Scholar

  • [46] Sundqvist, K.L., Tysklind, M., Geladi, P., Cato I. & Wiberg K. (2009a). Congener fingerprints of tetra-through octachlorinated dibenzo-p-dioxins and dibenzofurans in Baltic surface sediments and their relations to potential sources. Chemosphere 77(5): 612–620. http://dx.doi.org/10.1016/j.chemosphere.2009.08.057. http://dx.doi.org/10.1016/j.chemosphere.2009.08.057CrossrefGoogle Scholar

  • [47] Sundqvist, K.L., Tysklind, M., Cato, I., Bignert A. & Wiberg K. (2009b). Levels and homologue profiles of PCDD/Fs in sediments along the Swedish coast of the Baltic Sea. Environ. Sci. Pollut. Res. 16(4): 396–409. DOI:10.1007/s11356-009-0110-z. http://dx.doi.org/10.1007/s11356-009-0110-zCrossrefGoogle Scholar

  • [48] Szlinder-Richert J., Usydus Z. & Drgas A. (2012). Persistent organic pollutants in sediment from the southern Baltic: risk assessment. J. Environ. Monit.14;2100–2107. DOI: 10.1039/c2em30221g http://dx.doi.org/10.1039/c2em30221gCrossrefGoogle Scholar

  • [49] Szwernowski, P. (1957). Study of dredged material management. Gdańsk: IM. (In Polish) Google Scholar

  • [50] The Port of Gdansk. Retrieved February 17, 2014, from www.portgdansk.pl Google Scholar

  • [51] Traczewska, T. (2011). Biological methods for the assessment of environmental contamination. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej. (In Polish) Google Scholar

  • [52] Van den Berg M., Birnbaum L., Denison M., De Vito M., Farland W., et al. (2006). Human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds: the WHO 2005 re-evaluation. Toxicological Sciences 93(2): 223–241. DOI: 10.1093/toxsci/kfl055. http://dx.doi.org/10.1093/toxsci/kfl055CrossrefGoogle Scholar

  • [53] Verta, M., Salo, S., Korhonen, M., Aassmuth, T., Kiviranta, H., et al. (2007). Dioxin concentrations in sediments of the Baltic Sea — A survey of existing data. Chemosphere 67:1762–1775. DOI:10.1016/j.chemosphere.2006.05.125. http://dx.doi.org/10.1016/j.chemosphere.2006.05.125CrossrefGoogle Scholar

  • [54] Verta, M., Salo, S., Malve O. & Kiviranta H. (2003). Continued transport of PCDD/F contaminated sediments from River Kymijoki to the Gulf of Finland, the Baltic Sea. Organohalogen Compounds 61: 405–408. Google Scholar

  • [55] Verta, M., Lehtoranta, J., Salo, S., Korhonen M. & Kiviranta H. (1999). High concentrations of PCDD’s and PCDF’s in river Kymijoki sediments, South-Eastern Finland, caused by wood preservative Ky-5. Organohalogen Compounds 43: 261–264. Google Scholar

  • [56] Vikelsoe, J., Andersen H.V. & Hovmand M.F. (2005). Role of PCDD/F in deposition for soils, percolate and sediments. Organohalogen Compounds 67: 1170–1173. Google Scholar

  • [57] Vikelsoe J. & Johansen E. (2000). Estimation of dioxin emission from fires in chemicals. Chemosphere 40(2): 165–175. http://dx.doi.org/10.1016/S0045-6535(99)00231-3CrossrefGoogle Scholar

  • [58] Wentworth C.K. (1922). A scale of grade and class terms for clastic sediments. J. Geol. 30: 377–439. http://dx.doi.org/10.1086/622910CrossrefGoogle Scholar

  • [59] Witt, G., Schramm K.W. & Henkelman B. (1997). Occurrence and distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in sediments of the Western Baltic Sea. Chemosphere 35(7): 1465–1473. http://dx.doi.org/10.1016/S0045-6535(97)00218-XCrossrefGoogle Scholar

  • [60] Wolska L. & Mędrzycka K. (2009). Ecotoxicity assessment of bottom sediments from the sea ports of Gdańsk and Gdynia. Ochrona Środowiska 31(1): 49–52. (In Polish) Google Scholar

  • [61] Zielinski T., Dragan-Górska A., Pazdro K. & Weydmann A. (2014). Insights on Environmental Changes: Where the World is Heading. GeoPlanet:Earth and Planetary Sciences 14 Google Scholar

About the article

Published Online: 2014-10-29

Published in Print: 2014-09-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 43, Issue 3, Pages 312–323, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-014-0146-7.

Export Citation

© 2014 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Agnieszka Baran, Monika Mierzwa-Hersztek, Magdalena Urbaniak, Krzysztof Gondek, Marek Tarnawski, Magdalena Szara, and Marek Zieliński
Journal of Soils and Sediments, 2019
Krzysztof Konrad Lewandowski, Witold Cieślikiewicz, Marta Ewelina Kobusińska, and Elżbieta Niemirycz
Environmental Science and Pollution Research, 2018

Comments (0)

Please log in or register to comment.
Log in