Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 43, Issue 4

Issues

Cylindrospermopsin: cyanobacterial secondary metabolite. Biological aspects and potential risk for human health and life

Michał Adamski
  • Department of Plant Physiology and Development, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ewelina Chrapusta
  • Department of Plant Physiology and Development, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beata Bober
  • Department of Plant Physiology and Development, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ariel Kamiński
  • Department of Plant Physiology and Development, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Białczyk
  • Department of Plant Physiology and Development, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-04 | DOI: https://doi.org/10.2478/s13545-014-0148-5

Abstract

Cylindrospermopsin (CYN) is a cytotoxin produced by several species of cyanobacteria, which occur all over the world. It was demonstrated that CYN has a wide spectrum of biological activity in animal cells, involving hepatotoxicity, genotoxicity, cytotoxicity and carcinogenic potential, and is considered as one of the factors that caused human poisoning in Palm Island (Australia) and in Caruaru (Brazil). This compound may be introduced into organism by several ways, including consumption of water, fishes and seafood as well as accidental swallowing or aerosol spray inhalation during recreational using of reservoirs covered by cyanobacterial blooms. The information about the CYN impact on environment and its degradation processes under natural conditions is scant. Taking this into consideration CYN should be regarded as a potential threat to human health and life. This review presents physicochemical characteristic and biological activity of CYN, occurrence in freshwaters and its sensitivity to the influence of some environmental factors.

Keywords: cyanobacteria; cylindrospermopsin; biological activity; natural degradation; toxicity

  • [1] Abed R.M.M., Dobretsov S. & Sudesh K. (2009). Applications of cyanobacteria in biotechnology. J. Appl. Microbiol. 106(1), 1–12. DOI: 10.1111/j.1365-2672.2008.03918.x. http://dx.doi.org/10.1111/j.1365-2672.2008.03918.xCrossrefGoogle Scholar

  • [2] Antoniou M.G., De La Cruz A.A. & Dionysiou D.D. (2005). Cyanotoxins: New generation of water contaminations. J. Environ. Engineer. 131(9), 1239–1243. http://dx.doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1239)CrossrefGoogle Scholar

  • [3] Bain P., Shaw G. & Patel B. (2007). Induction of p53-regulated gene expression in human cell lines exposed to the cyanobacterial toxin cylindrospermopsin. J. Toxicol. Environ. Health. A. 70(19), 1687–1693. DOI: 10.1080/15287390701434877. http://dx.doi.org/10.1080/15287390701434877CrossrefGoogle Scholar

  • [4] Banker R., Carmeli S., Hadas O., Teltsch B., Porat R. & Sukenik A. (1997). Identification of cylindrospermopsin in Aphanizomenon ovalisporum isolated from Lake Kinneret, Israel. J. Phycol. 33(4), 613–616. DOI: 10.1111/j.0022-3646.1997.00613.x. http://dx.doi.org/10.1111/j.0022-3646.1997.00613.xCrossrefGoogle Scholar

  • [5] Banker R., Teltsch B., Sukenik A. & Carmeli S. (2000). 7-epicylindrospermopsin, a toxic minor metabolite of the cyanobacterium Aphanizomenon ovalisporum from Lake Kinneret. Israel. J. Nat. Prod. 63(3), 387–389. DOI: 10.1021/np990498m. http://dx.doi.org/10.1021/np990498mCrossrefGoogle Scholar

  • [6] Bazin E., Mourot A., Humpage A.R. & Fessard V. Genotoxicity of a freshwater cyanotoxin, cylindrospermopsin, in two human cell lines: Caco-2 and HepaRG. (2010). Environ. Mol. Mutagen. 51(3), 251–259. DOI: 10.1002/em.20539. CrossrefGoogle Scholar

  • [7] Bláhová L., Babica P., Adamovský O., Kohoutek J., Maršálek B. & Bláha L. (2008). Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environ. Chem. Lett. 6(4), 223–227. DOI: 10.1007/s10311-007-0126-x. http://dx.doi.org/10.1007/s10311-007-0126-xCrossrefGoogle Scholar

  • [8] Bogialli S., Bruno M., Curini R., Di Corcia A., Fanali C. & Laganà A. (2006). Monitoring algal toxins in lake water by liquid chromatography tandem mass spectrometry. Environ. Sci. Technol. 40(9), 2917–2923. DOI: 10.1021/es052546x. http://dx.doi.org/10.1021/es052546xCrossrefGoogle Scholar

  • [9] Bourke A.T.C., Hawes R.B., Neilson A. & Stallman N.D. (1983). An outbreak of hepato-enteritis (the Palm Island mystery disease) possibly caused by algal intoxication. Toxicon. 21(3), 45–48. DOI: 10.1016/0041-0101(83)90151-4. http://dx.doi.org/10.1016/0041-0101(83)90151-4CrossrefGoogle Scholar

  • [10] Brient L., Lengronne M., Bormans M., Fastner J. (2009). First occurrence of cylindrospermopsin in freshwater in France. Environ. Toxicol. 24(4), 415–420. DOI: 10.1002/tox.20439. http://dx.doi.org/10.1002/tox.20439CrossrefGoogle Scholar

  • [11] Carmichael W.W. (2001). Health effects of toxin-producing cyanobacteria: “The Cyano-HABs”. Hum. Ecol. Risk. Asses. 7(5), 1393–1407. DOI: 10.1080/20018091095087. http://dx.doi.org/10.1080/20018091095087CrossrefGoogle Scholar

  • [12] Chiswell R.K., Shaw G.R., Eaglesham G.K., Smith M.J., Norris R.L., Seawright A.A. & Moore M.R. (1999). Stability of cylindrospermopsin, the toxin from the cyanobacterium Cylindrospermopsis raciborskii, effect of pH, temperature, and sunlight on decomposition. Environ. Toxicol. 14(1), 155–165. DOI: 10.1002/(SICI)1522-7278(199902)14:1〈155::AID-TOX20〉3.0.CO;2-Z. http://dx.doi.org/10.1002/(SICI)1522-7278(199902)14:1<155::AID-TOX20>3.0.CO;2-ZCrossrefGoogle Scholar

  • [13] Codd G.A., Morrison L.F. & Metcalf J.S. (2005). Cyanobacterial toxins: risk management for health protection. Toxicol. Appl. Pharmacol. 203(2005), 264–272. DOI: 10.1016/j.taap.2004.02.016. http://dx.doi.org/10.1016/j.taap.2004.02.016CrossrefGoogle Scholar

  • [14] De Philips R. & Vincenzini M. (1998). Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 22(3), 151–175. DOI: 10.1111/j.1574-6976.1998.tb00365.x. http://dx.doi.org/10.1016/S0168-6445(98)00012-6CrossrefGoogle Scholar

  • [15] Dittmann E. & Wiegand C. (2006). Cyanobacterial toxins occurrence, biosynthesis and impact on human affairs. Mol. Nut. Food. Res. 50(1), 7–17. DOI: 10.1002/mnfr.200500162. http://dx.doi.org/10.1002/mnfr.200500162CrossrefGoogle Scholar

  • [16] Fabbro L., Baker M., Duivenvoorden L., Pegg G. & Shiel R. (2001). The effects of the ciliate Paramecium cf. caudatum Ehrenberg on toxin producing Cylindrospermopsis isolated from the Fitzroy river, Australia. Environ. Toxicol. 16(6), 489–497. DOI: 10.1002/tox.10007. http://dx.doi.org/10.1002/tox.10007CrossrefPubMedGoogle Scholar

  • [17] Falconer I.R. & Humpage A.R. (2001). Preliminary evidence for in vivo tumour initiation by oral administration of extracts of the blue-green alga Cylindrospermopsis raciborskii containing the toxin cylindrospermopsin. Environ. Toxicol. 16(2), 192–195. DOI: 10.1002/tox.1024. http://dx.doi.org/10.1002/tox.1024CrossrefGoogle Scholar

  • [18] Falconer I.R. & Humpage A.R. (2005). Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. Int. J. Environ. Res. Public. Health. 2(1), 43–50. http://dx.doi.org/10.3390/ijerph2005010043CrossrefGoogle Scholar

  • [19] Fastner J., Heinze R., Humpage A.R., Mischeke U., Eaglesham G.K. & Chorus I. (2003). Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon. 42(3), 313–321. DOI: 10.1016/S0041-0101(03)00150-8. http://dx.doi.org/10.1016/S0041-0101(03)00150-8CrossrefGoogle Scholar

  • [20] Froscio S.M., Humpage A.R., Burcham P.C. & Falconer I.R. (2003). Cylindrospermopsin — induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocyte. Environ. Toxicol. 18(4), 243–251. DOI: 10.1002/tox.10121. http://dx.doi.org/10.1002/tox.10121CrossrefGoogle Scholar

  • [21] Froscio S.M., Humpage A.R., Wickramasinghe W., Shaw G. & Falconer I.R. (2008). Interaction of the cyanobacterial toxin cylindrospermopsin with the eukaryotic protein synthesis system. Toxicon. 51(2), 191–198. DOI: 10.1016/j.toxicon.2007.09.001. http://dx.doi.org/10.1016/j.toxicon.2007.09.001CrossrefGoogle Scholar

  • [22] Harada K.I., Ohtani I., Iwamoto K., Suzuki M., Watanabe M.F., Watanabe M. & Terao K. (1994). Isolation of cylindrospermopsin from a cyanobacterium Umezekia natans and its screening method. Toxicon. 32(1), 73–84. http://dx.doi.org/10.1016/0041-0101(94)90023-XCrossrefGoogle Scholar

  • [23] Hawkins P.R., Runnegar M.T.C., Jackson A.R.B. & Falconer I.R. (1985). Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated form a domestic supply reservoir. Appl. Environ. Microbiol. 50(5), 1292–1295. Google Scholar

  • [24] Humpage A.R. & Falconer I.R. (2003). Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice, determination of no observed adverse effect level for deriving a drinking water guideline value. Environ. Toxicol. 18(2), 94–103. DOI: 10.1002/tox.10104. http://dx.doi.org/10.1002/tox.10104CrossrefGoogle Scholar

  • [25] Humpage A.R., Fenech M., Thomas P. & Falconer I.R. (2000). Micronucleus induction and chromosome loss in transformed human white cells indicate clastogenic and aneugenic action of the cyanobacterial toxin, cylindrospermopsin. Mutat. Res. 472(2000), 155–161. DOI: 10.1016/S1383-5718(00)00144-3. http://dx.doi.org/10.1016/S1383-5718(00)00144-3CrossrefGoogle Scholar

  • [26] Humpage A.R., Fontaine F., Froscio S., Burcham P. & Falconer I.R. (2005). Cylindrospermopsin genotoxicity and cytotoxicity, role of cytochrome P-450 and oxidative stress. J. Toxicol. Environ. Health. A. 68(9), 739–753. DOI: 10.1080/15287390590925465. http://dx.doi.org/10.1080/15287390590925465CrossrefGoogle Scholar

  • [27] Kaebernick M. & Neilan B.A. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol. Ecol. 35(1), 1–9. DOI: 10.1111/j.1574-6941.2001.tb00782.x. http://dx.doi.org/10.1111/j.1574-6941.2001.tb00782.xCrossrefGoogle Scholar

  • [28] Kokociński M., Dziga D., Spoof L., Stefaniak K., Jurczak T., Mankiewicz-Boczek J. & Meriluoto J. (2009). First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere. 74(5), 669–675. DOI: 10.1016/j.chemosphere.2008.10.027. http://dx.doi.org/10.1016/j.chemosphere.2008.10.027CrossrefGoogle Scholar

  • [29] Lankoff A., Wojcik A., Lisowska H., Bialczyk J., Dziga D. & Carmichael W.W. (2007). No induction of structural chromosomal aberrations in cylindrospermopsin-treated CHO-K1 cells without and with metabolic activation. Toxicon. 50(8), 1105–1115. DOI: 10.1016/j.toxicon.2007.07.021. http://dx.doi.org/10.1016/j.toxicon.2007.07.021CrossrefGoogle Scholar

  • [30] Li R., Carmichael W.W., Brittain S., Eaglesham G.K., Shaw G.R., Liu Y. & Watanabe M.M. (2001). First report of the cyanotoxins cylindrospermopsin and deoxycylindro-spermopsin from Raphidiopsis curvata. J. Phycol. 37(6), 1121–1126. DOI: 10.1046/j.1529-8817.2001.01075.x. http://dx.doi.org/10.1046/j.1529-8817.2001.01075.xCrossrefGoogle Scholar

  • [31] López-Alonso H., Rubiolo J.A., Vega F., Vieytes M.R. & Botana L.M. (2013). Protein synthesis inhibition and oxidative stress induced by cylindrospermopsin elicit apoptosis in primary rat hepatocytes. Chem. Res. Toxicol. 26(2), 203–212. DOI: 10.1021/tx3003438. http://dx.doi.org/10.1021/tx3003438CrossrefGoogle Scholar

  • [32] Metcalf J.S., Barakate A. & Codd G.A. (2004). Inhibition of plant protein synthesis by the cyanobacterial hepatotoxin, cylindrospermopsin. FEMS Microbiol. Lett. 235(1), 125–129. DOI: 10.1016/j.femsle.2004.04.025. http://dx.doi.org/10.1111/j.1574-6968.2004.tb09576.xCrossrefGoogle Scholar

  • [33] Metcalf J.S & Codd G.A. (2009). Cyanobacteria, neurotoxins and water resources: Are there implications for human neurodegenerative disease? Amyotroph. Lateral. Sc. 10(2), 74–78. DOI: 10.3109/17482960903272942. http://dx.doi.org/10.3109/17482960903272942CrossrefGoogle Scholar

  • [34] Mohamed Z. & Alamri S.A. (2012). Biodegradation of cylindrospermopsin toxin by microcystin-degrading bacteria isolated from cyanobacterial blooms. Toxicon. 60(8), 1390–1395. http://dx.doi.org/10.1016/j.toxicon.2012.10.004CrossrefGoogle Scholar

  • [35] Mohamed Z. & Al-Shehri A. (2013). Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom. Environ. Monit. Assess. 185(3), 2157–2166. http://dx.doi.org/10.1007/s10661-012-2696-8CrossrefGoogle Scholar

  • [36] Neumann C., Bain P. & Shaw G. (2007). Studies on the comparative in vitro toxicology of the cyanobacterial metabolite deoxycylindrospermopsin. J. Toxicol. Environ. Health. 70(19), 1679–1686. DOI: 10.1080/15287390701434869. http://dx.doi.org/10.1080/15287390701434869CrossrefGoogle Scholar

  • [37] Norris R.L., Eaglesham G.K., Pierens G., Shaw G.R., Smith M.J., Chiswell R.K., Seawright A.A. & Moore M.R. (1999). Deoxycylindrospermopsin, an analog of cylindrospermopsin from Cylindrospermopsis raciborskii. Environ. Toxicol. 14(1), 163–165. DOI: 10.1002/(SICI)1522-7278(199902)14:1〈163::AID-TOX21〉3.0.CO;2-V. http://dx.doi.org/10.1002/(SICI)1522-7278(199902)14:1<163::AID-TOX21>3.0.CO;2-VCrossrefGoogle Scholar

  • [38] Norris R.L.G., Seawright A.A., Shaw G.R., Senogles P., Eaglesham G.K., Smith M.J., Chiswell R.K. & Moore M.R. (2002). Hepatic xenobiotic metabolism of Cylindrospermopsin in vivo in the mouse. Toxicon. 40(4), 471–476. DOI: 10.1016/S0041-0101(01)00243-4. http://dx.doi.org/10.1016/S0041-0101(01)00243-4CrossrefGoogle Scholar

  • [39] Ohtani I., Moore R.E. & Runnegar M.T.C. (1992). Cylindrospermopsin, a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J. Am. Chem. Soc. 114(20), 7942–7944. http://dx.doi.org/10.1021/ja00046a067CrossrefGoogle Scholar

  • [40] Preußel K., Stüken A., Wiedner C., Chorus I. & Fastner J. (2006). First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon. 47(2), 156–162. DOI: 10.1016/j.toxicon.2005.10.013. http://dx.doi.org/10.1016/j.toxicon.2005.10.013CrossrefGoogle Scholar

  • [41] Quesada A., Moreno E., Carrasco D., Paniagua T., Wörmer L., De Hoyos C. & Sukenik A. (2006). Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water reservoir. Eur. J. Phycol. 41(1), 39–45. DOI: 10.1080/09670260500480926. http://dx.doi.org/10.1080/09670260500480926CrossrefGoogle Scholar

  • [42] Runnegar M.T., Kong S.M., Zhong Y.Z. & Lu S.C. (1995). Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem. Pharmacol. 49(2), 219–225. DOI: 10.1016/S0006-2952(94)00466-8. http://dx.doi.org/10.1016/S0006-2952(94)00466-8CrossrefGoogle Scholar

  • [43] Saker M.L. & Eaglesham G.K. (1999). The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw crayfish Cherax quadricarinatus. Toxicon. 37(7), 1065–1077. http://dx.doi.org/10.1016/S0041-0101(98)00240-2CrossrefGoogle Scholar

  • [44] Saker M.L., Metcalf J.S., Codd G.A., Vasconcelos V.M. (2004). Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea. Toxicon. 43(2), 185–194. DOI: 10.1016/j.toxicon.2003.11.022. http://dx.doi.org/10.1016/j.toxicon.2003.11.022CrossrefGoogle Scholar

  • [45] Sano T., Kikuchi S., Kubo T., Takagi H., Hosoy K. & Kaya K. (2008). New values of molecular extinction coefficient and specific rotation for cyanobacterial toxin cylindrospermopsin. Toxicon. 51(4), 717–719. DOI: 10.1016/j.toxicon.2007.11.007. http://dx.doi.org/10.1016/j.toxicon.2007.11.007CrossrefGoogle Scholar

  • [46] Schembri M.A., Neilan B.A. & Saint C.P. (2001). Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ. Toxicol. 16(5), 413–421. DOI: 10.1002/tox.1051. http://dx.doi.org/10.1002/tox.1051CrossrefGoogle Scholar

  • [47] Seawright A.A., Nolan C.C., Shaw G.R., Chiswell R.K., Norris R.L., Moore M.R. & Smith M.J. (1999). The oral toxicity for mice of the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska). Environ. Toxicol. 14(1), 135–142. DOI: 10.1002/(SICI)1522-7278(199902)14:1〈135::AID-TOX17〉3.0.CO;2-L. http://dx.doi.org/10.1002/(SICI)1522-7278(199902)14:1<135::AID-TOX17>3.0.CO;2-LCrossrefGoogle Scholar

  • [48] Seifert M., McGregor G., Eaglesham G., Wickramasinghe W. & Shaw G.R. (2007). First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei. Harmful Algae. 6(1), 73–80. DOI: 10.1016/j.hal.2006.07.001. http://dx.doi.org/10.1016/j.hal.2006.07.001CrossrefGoogle Scholar

  • [49] Shaw G.R., Seawright A.A., Moore M.R. & Lam P.K. (2000). Cylindrospermopsin, a cyanobacterial alkaloid, evaluation of its toxicological activity. Ther. Drug. Monit. 22(1), 89–92. DOI: 10.1097/00007691-200002000-00019. http://dx.doi.org/10.1097/00007691-200002000-00019CrossrefGoogle Scholar

  • [50] Shen X., Lam P.K., Shaw G.R. & Wickramasinghe W. (2002). Genotoxicity investigation of a cyanobacterial toxin, cylindrospermopsin. Toxicon. 40(10), 499–501. DOI: 10.1016/S0041-0101(02)00151-4. http://dx.doi.org/10.1016/S0041-0101(02)00151-4CrossrefGoogle Scholar

  • [51] Smith M.J., Shaw G.R., Eaglesham G.K., Ho L. & Brookes J.D. (2008). Elucidating the factors influencing the biodegradation of cylindrospermopsin in drinking water sources. Environ. Toxicol. 23(3), 413–421. DOI: 10.1002/tox.20356. http://dx.doi.org/10.1002/tox.20356CrossrefGoogle Scholar

  • [52] Spoof L., Berg K.A., Rapala J., Lahti K., Lepistö L., Metcalf J.S., Codd G.A. & Meriluoto J. (2006). First observation of cylindrospermopsin in Anabaena lapponica isolated from the Boreal Environment (Finland). Environ. Toxicol. 21(6), 552–560. DOI: 10.1002/tox.20216. http://dx.doi.org/10.1002/tox.20216CrossrefGoogle Scholar

  • [53] Štraser A., Filipič M., Novak M. & Žegura B. (2013). Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells. Mar. Drugs. 11(8), 3077–3090. DOI: 10.3390/md11083077. http://dx.doi.org/10.3390/md11083077CrossrefGoogle Scholar

  • [54] Terao K., Ohmori S., Igarishi K., Ohtani I., Watanabe M.F., Harada K.I., Ito E. & Watanabe M. (1994). Electron microscope studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green alga Umezekia natans. Toxicon. 32(7), 833–843. http://dx.doi.org/10.1016/0041-0101(94)90008-6CrossrefGoogle Scholar

  • [55] Weirich C.A., Miller T.R. (2014). Freshwater harmful algal blooms: toxins and children’s health. Curr. Probl. Pediatr. Adolesc. Health Care. 44(1), 2–24. http://dx.doi.org/10.1016/j.cppeds.2013.10.007CrossrefGoogle Scholar

  • [56] Welker M., Chorus I., Fastner J. (2004). WHO Report on Water, Sanitation and Health Protection of Human Environment, Geneva, p.4. Google Scholar

  • [57] Wörmer L., Cirés S., Carrasco D. & Quesada A. (2008). Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae. 7(2), 206–213. DOI: 10.1016/j.hal.2007.07.004. http://dx.doi.org/10.1016/j.hal.2007.07.004CrossrefGoogle Scholar

  • [58] Wörmer L., Huerta-Fontela M., Cirés S., Carrasco D. & Quesada A. (2010). Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin. Environ. Sci. Technol. 44(8), 3002–3007. DOI: 10.1021/es9036012. http://dx.doi.org/10.1021/es9036012CrossrefGoogle Scholar

  • [59] Young F.M., Micklem J. & Humpage A.R. (2008). Effects of the blue-green algal toxin cylindrospermopsin (CYN) on human granulosa cells in vitro. Reprod. Toxicol. 25(3), 374–380. DOI: 10.1016/j.reprotox.2008.02.006. http://dx.doi.org/10.1016/j.reprotox.2008.02.006CrossrefGoogle Scholar

About the article

Published Online: 2015-01-04

Published in Print: 2014-12-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 43, Issue 4, Pages 442–449, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-014-0148-5.

Export Citation

© 2014 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michal Adamski, Paweł Żmudzki, Jan Bialczyk, Ariel Kaminski, Ewelina Chrapusta-Srebrny, Beata Bober, and Kornelia Duchnik
Oceanological and Hydrobiological Studies, 2019, Volume 48, Number 3, Page 227
[3]
Michal Adamski, Paweł Żmudzki, Ewelina Chrapusta, Ariel Kaminski, Beata Bober, Kornelia Zabaglo, and Jan Bialczyk
Algal Research, 2016, Volume 18, Page 1
[4]
Michal Adamski, Paweł Żmudzki, Ewelina Chrapusta, Beata Bober, Ariel Kaminski, Kornelia Zabaglo, Ewa Latkowska, and J. Bialczyk
Algal Research, 2016, Volume 15, Page 129

Comments (0)

Please log in or register to comment.
Log in