Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 43, Issue 4

Issues

Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir

Robert Gwiazda / Andrzej Woźnica
  • Faculty of Biology and Environmental Protection, University of Silesia, ul. Jagiellońska 28, 40-032, Katowice, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bartosz Łozowski
  • Faculty of Biology and Environmental Protection, University of Silesia, ul. Jagiellońska 28, 40-032, Katowice, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maciej Kostecki
  • Institute of Environmental Engineering, Polish Academy of Sciences, ul. M. Skłodowskiej-Curie 34, 41-819, Zabrze, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Flis
Published Online: 2015-01-04 | DOI: https://doi.org/10.2478/s13545-014-0160-9

Abstract

Large numbers of Mallard Anas platyrhynchos (max. 10,490 ind.), Black-headed Gull Chroicocephalus ridibundus (max. 3,430 ind.) and Great Cormorant Phalacrocorax carbo (max. 1,449 ind.) were recorded on the Goczałkowice Reservoir, Poland (2,754 ha). Most of the waterbirds occurred in the backwater of this reservoir. The amount of phosphorus and nitrogen loaded by the most numerous waterbirds into Goczałkowice Reservoir was estimated at 958 kg and 2,621 kg, respectively in 2011 and 1,043 kg and 2,793 kg, respectively in 2012. In 2011 and 2012, the waterbirds introduced a considerable amount of phosphorus, nitrogen and a large number of coliforms into the backwater of the reservoir. The concentration of different forms of phosphorus and nitrogen, chlorophyll-a and bacteria coli in the water was not greater at the site of birds’ concentration (except dissolved organic nitrogen). The concentration of nitrates in the water at the site near the breeding colony of gulls in comparison with the reference site was not different. The amounts of P-tot and N-tot in the sediment were similar at the site affected by waterbirds and at the reference site. The dynamics of water masses was not the reason for the lack of differences between the studied sites.

Keywords: bird assemblages; water chemistry; nutrient concentration; chlorophyll-a; bacteria coli

  • [1] Betleja, J. (2005). [Birds of the Goczałkowice Reservoir]. In: Konferencja Naukowo-Techniczna z okazji Jubileuszu 50-lecia budowy Zbiornika Wodnego na Małej Wiśle w Goczałkowicach, 20-21.09.2005 (100–103). Katowice, GPW. Google Scholar

  • [2] Betleja, J., Fajer M., Ruman M., Rzętała M., Waga J.M., Chylarecki P., Gwiazda R., Profus P. & Joseph-Tomaszewska E. (2006). Waloryzacja przyrodnicza obszaru Natura 2000 “Dolina Górnej Wisły”. Bytom, Katowice, Ogólnopolskie Towarzystwo Ochrony Ptaków. Google Scholar

  • [3] Benton, C., Khan F., Monaghan P. & Richards W.N. (1983). The contamination of a major water supply by gulls (Larus sp.). Water Research 17(7): 789–798. DOI: 10.1016/0043-1354(83)90073-8. http://dx.doi.org/10.1016/0043-1354(83)90073-8CrossrefGoogle Scholar

  • [4] Brierley, J.A., Brandvold D.K. & Popp C. (1975). Waterfowl refuge effect on water quality: I. Bacterial populations. Water Pollutions Control Federation 47(7): 1892–1900. Google Scholar

  • [5] Damare, J.M., Hussong D., Weiner R.M. & Colwell R.R. (1979). Aerobic and facultatively anaerobic bacteria associated with the gut of Canada geese (Branta canadensis) and Whistling swans (Cygnus columbianus columbianus). Applied and Environmental Microbiology 38(2): 258–266. Google Scholar

  • [6] Dobrowolski, K.A., Halba R. & Nowicki J. (1976). The role of birds in eutrophication by import and export of trophic substances of various waters. Limnologica 10(2): 543–549. Google Scholar

  • [7] Ganning, B. & Wolff F. (1969). The effects of bird droppings on chemical and biological dynamics in brackish water rockpools. Oikos 20: 274–286. http://dx.doi.org/10.2307/3543194CrossrefGoogle Scholar

  • [8] Gere, G. & Andrikovics S. (1992). Effects of waterfowl on water quality. Hydrobiologia 243/244: 445–448. DOI: 10.1007/BF00007061. http://dx.doi.org/10.1007/BF00007061CrossrefGoogle Scholar

  • [9] Gwiazda, R. (1996). Contribution of water birds to nutrient loading to the ecosystem of mesotrophic reservoir. Ekologia Polska 44(3–4): 289–297. Google Scholar

  • [10] Gwiazda, R., Jarocha K. & Szarek-Gwiazda E. (2010). Impact of small cormorant (Phalacrocorax carbo sinensis) roost on nutrient and phytoplankton assemblages in the littoral regions of a submontane reservoir. Biologia 65(4): 742–748. DOI: 10.2478/s11756-010-0072-0. http://dx.doi.org/10.2478/s11756-010-0072-0CrossrefWeb of ScienceGoogle Scholar

  • [11] Hussong, D., Damare J.M., Limpert R.J., Sladen W.J.L, Weiner R.M. & Colwell R.R. (1979). Microbial impact of canada geese (Branta canadensis) and whistling swans (Cygnus columbianus columbianus) on aquatic ecosystems. Applied and Environmental Microbiology 37(1), 14–20. Google Scholar

  • [12] Kirschner, A.K., Zechmeister T. C., Kavka G.G., Beiwl C., Herzig A., Mach R.L., Farnleitner A.H. (2004). Integral strategy for evaluation of fecal indicator performance in bird-influenced saline inland waters. Applied and Environmental Microbiology 70(12): 7396–7403. DOI: 10.1128/AEM.70.12.7396-7403.2004. http://dx.doi.org/10.1128/AEM.70.12.7396-7403.2004CrossrefGoogle Scholar

  • [13] Kitchell, J.F., Schindler D.E., Herwig B.R., Post D.M. & Olson M.H. (1999). Nutrient cycling at the landscape scale: The role of diel foraging migrations by geese at the Bosque del Apache National Wildlife Refuge, New Mexico. Limnology and Oceanography 44(3): 828–836. http://dx.doi.org/10.4319/lo.1999.44.3_part_2.0828CrossrefGoogle Scholar

  • [14] Klimaszyk, P. (2012). May a cormorant colony be a source of coliform and chemical pollution in a lake? Oceanological and Hydrobiological Studies 41(1): 67–73. DOI: 10.2478/s13545-012-0008-0. http://dx.doi.org/10.2478/s13545-012-0008-0Web of ScienceCrossrefGoogle Scholar

  • [15] Klimaszyk, P. & Rzymski P. (2013). Impact of cormorant (Phalacrocorax carbo sinensis L.) colonies on microbial pollution in lakes. Limnological Review 13(3): 139–145. DOI: 10.2478/limre-2013-0015. CrossrefGoogle Scholar

  • [16] Klimaszyk, P., Piotrowicz R. & Rzymski P. (2014). Changes in the ecosystem of shallow softwater lake induced by the Great Cormorant roosting colony. Journal of Limnology accepted to press. DOI: dx.doi.org/10.4081/jlimnol.2014.994. CrossrefGoogle Scholar

  • [17] Laval, B., & Hodges B.R. (2000). The CWR Estuary and Lake Computer Model ELCOM User Guide. Centre for Water Research, University of Western Australia. Technical Report. Version: 1.1. Patch 54. Google Scholar

  • [18] Leentvaar, P. (1967). Observations in Guanotrophic Environments. Hydrobiologia 29(3–4): 441–489. DOI: 10.1007/BF00189906. http://dx.doi.org/10.1007/BF00189906CrossrefGoogle Scholar

  • [19] Levesque, B., Brousseau P., Bernier F., Dewailly E. & Joly J. (2000). Study of the bacterial content of Ring-billed gull droppings in relation to recreational water quality. Water Research 34(4): 1089–1096. http://dx.doi.org/10.1016/S0043-1354(99)00266-3CrossrefGoogle Scholar

  • [20] Ligęza, S. & Smal H. (2003). Accumulation of nutrients in soil affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements. Chemosphere 52: 595–602. DOI:10.1016/S0045-6535(03)00241-8. http://dx.doi.org/10.1016/S0045-6535(03)00241-8CrossrefGoogle Scholar

  • [21] Manny, B.A., Johnson W.C. & Wetzel R.G. (1994). Nutrient additions by waterfowl to lakes and reservoirs: predicting their effects on productivity and quality. Hydrobiologia 279/280: 121–132. DOI: 10.1007/BF00027847. http://dx.doi.org/10.1007/BF00027847CrossrefGoogle Scholar

  • [22] Marion, L., Clergeau P., Brient L. & Bertru G. (1994). The importance of avian-contributed nitrogen (N) and phosphorus (P) to Lake Grand-Lieu, France. Hydrobiologia 279/280: 133–147. DOI: 10.1007/BF00027848. http://dx.doi.org/10.1007/BF00027848CrossrefGoogle Scholar

  • [23] Meerburg, B.G., Koene M. G., Kleijn D. (2011). Escherichia coli concentrations in feces of geese, coots, and gulls residing on recreational water in The Netherlands. Vector-Borne and Zoonotic Diseases 11(6): 601–603. http://dx.doi.org/10.1089/vbz.2010.0218Web of ScienceCrossrefGoogle Scholar

  • [24] Pettigrew, C.T., Hann B.J. & Goldsborough L.G. (1998). Waterfowl feces as a source of nutrients to prairie wetland: responses of microinvertebrates to experimental additions. Hydrobiologia 362: 55–66. DOI: 10.1023/A:1003167219199. http://dx.doi.org/10.1023/A:1003167219199CrossrefGoogle Scholar

  • [25] Portnoy, J.W. (1990). Gull contribution of phosphorus and nitrogen to a Cape Cod kettle pond. Hydrobiologia 202: 61–69. DOI: 10.1007/BF00027092. http://dx.doi.org/10.1007/BF02208127CrossrefGoogle Scholar

  • [26] Post, D.M., Taylor J.P., Kitchell J.F., Olson M.H., Schindler D.E. & Herwig B.R. (1998). The role of migratory waterfowl as nutrient vectors in a managed wetland. Conservation Biology 12(4): 910–920. http://dx.doi.org/10.1046/j.1523-1739.1998.97112.xCrossrefGoogle Scholar

  • [27] Rönicke, H., Doerffer R., Siewers H., Buttner O., Lindenschmidt K.E., Herzsprung P., Beyer M. & Rupp H. (2008). Phosphorus input by nordic geese to the eutrophic Lake Arendsee, Germany. Fundamental and Applied Limnology 172(2): 111–119. DOI: 10.1127/1863-9135/2008/0172-0111. http://dx.doi.org/10.1127/1863-9135/2008/0172-0111Web of ScienceCrossrefGoogle Scholar

  • [28] Scherer, N.M., Gibbons H.L., Stoops K.B. & Muller M. (1995). Phosphorus loading of an urban lake by bird droppings. Lake and Reservoir Management 11(4): 317–327. DOI: 10.1080/07438149509354213. http://dx.doi.org/10.1080/07438149509354213CrossrefGoogle Scholar

  • [29] Sokal, R.R. & Rohlf F.J. (1987). Introduction to biostatistics. New York: W. H. Freeman and Company. Google Scholar

  • [30] Standard Methods (2006). Standard methods for the Examination of Water and Wastewater (21st ed). Washington: American Public Health Association. Google Scholar

  • [31] Unckless, R.L. & Makarewicz J.C. (2007). The impact of nutrient loading from Canada Geese (Branta canadensis) on water quality, a mesocosm approach. Hydrobiologia 586: 393–401. DOI: 10.1007/s10750-007-0712-8. http://dx.doi.org/10.1007/s10750-007-0712-8CrossrefWeb of ScienceGoogle Scholar

  • [32] Wait, D.A., Aubrey D.P. & Anderson W.B. (2005). Seabird guano influences on desert islands: soil chemistry and herbaceous species richness and productivity. Journal of Arid Environments 60(4): 681–695. DOI:10.1016/j.jaridenv.2004.07.001. http://dx.doi.org/10.1016/j.jaridenv.2004.07.001CrossrefGoogle Scholar

  • [33] Wiśniewska, H., Niewolak S., Korzeniewska E. & Filipkowska Z. (2007). Enterobacteriace family bacteria in a mesotrophic lake (Lake Długie Wigierskie) in the presence of Black Cormorants. Polish Journal of Natural Sciences 22(3): 486–499. http://dx.doi.org/10.2478/v10020-007-0043-2CrossrefGoogle Scholar

About the article

Published Online: 2015-01-04

Published in Print: 2014-12-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 43, Issue 4, Pages 418–426, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.2478/s13545-014-0160-9.

Export Citation

© 2014 Faculty of Oceanography and Geography, University of Gdańsk, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marco Bartoli, Mindaugas Zilius, Mariano Bresciani, Diana Vaiciute, Irma Vybernaite-Lubiene, Jolita Petkuviene, Gianmarco Giordani, Darius Daunys, Tomas Ruginis, Sara Benelli, Claudia Giardino, Paul A. Bukaveckas, Petras Zemlys, Evelina Griniene, Zita R. Gasiunaite, Jurate Lesutiene, Renata Pilkaitytė, and Arturas Baziukas-Razinkovas
Frontiers in Marine Science, 2018, Volume 5
[2]
A. Mentzafou and E. Dimitriou
Science of The Total Environment, 2019, Volume 646, Page 134
[3]
J. Wiora, A. Kozyra, and A. Wiora
Bulletin of the Polish Academy of Sciences Technical Sciences, 2017, Volume 65, Number 3
[4]
Diana J.R. Lafferty, Katie C. Hanson-Dorr, Amanda M. Prisock, and Brian S. Dorr
Forest Ecology and Management, 2016, Volume 369, Page 10
[6]
Piotr Klimaszyk, Andrzej Brzeg, Piotr Rzymski, and Ryszard Piotrowicz
Science of The Total Environment, 2015, Volume 517, Page 222

Comments (0)

Please log in or register to comment.
Log in