Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 44, Issue 3


Decomposition study of in vivo phytoplankton absorption spectra aimed at identifying the pigments and the phytoplankton group in complex case 2 coastal waters of the Arabian Sea

S. S. Shaju
  • Fishing Technology Division, Central Institute of Fisheries Technology, Matsyapuri PO, Cochin 682 029, Kerala, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Minu
  • Fishing Technology Division, Central Institute of Fisheries Technology, Matsyapuri PO, Cochin 682 029, Kerala, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. S. Srikanth
  • Takuvik Joint UL/CNRS Laboratory, Department of Biology, Laval University, Quebec G1V 0A6, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Muhamed Ashraf
  • Corresponding author
  • Fishing Technology Division, Central Institute of Fisheries Technology, Matsyapuri PO, Cochin 682 029, Kerala, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. K. Vijayan
  • Centre of Marine and Living Resources and Ecology, Ministry of Earth Sciences, Govt. of India, Kendriya Bhavan, Kakkanad, P.B.NO.5415, P.O.CSEZ, Kochi, Kerala-682037, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ B. Meenakumari
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/ohs-2015-0027


Phytoplankton modify the optical properties of the seawater by altering the subsurface light field. Information on the accessory pigments present in the phytoplankton helps to differentiate major phytoplankton classes or taxonomic groups. The variability in the absorption spectra of phytoplankton and particulate matter of case 2 coastal waters of the Southeastern Arabian Sea were studied from June 2010 to November 2011. The phytoplankton specific absorption coefficient, at 440 nm and 675 nm, a*ph (440) and a*ph (675) varied from 0.018 to 0.32 m2 mg-1 and from 0.0005 to 0.16 m2 mg-1, respectively. The 4th derivative spectra computed for each in vivo absorption spectrum showed that the amplitude of maxima obtained is proportional to the concentration of the chromoprotein which absorbed that wavelength. Regression of pigment concentration against the 4th derivative spectral coefficient showed that the measurements of particulate absorption could provide quantitative information on chlorophyll α and other accessory pigment concentrations. Fucoxanthin and diadinoxanthin, the carotenoid pigments found in the diatoms were identified from the derivatives peaks. The study demonstrates the utility of using the 4th derivative analysis as a tool to identify the dominating phytoplankton group and its pigment composition.

Keywords: Total particulate absorption; phytoplankton specific absorption coefficient; packaging effect; derivative analysis


  • Aguirre-Goméz, R., Weeks A.R. & Boxall S.R. (2001). The identification of phytoplankton pigments from absorption spectra. Int. J. Remote. Sens. 22 (2 & 3): 315 - 338.CrossrefGoogle Scholar

  • Babin, M., Stramski, D., Ferrari G.M., Claustre, H., Bricaud A., Obolensky, G. & Hoepffner, N. (2003). Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe. J. Geophys. Res. 108 (C7): 3211.CrossrefGoogle Scholar

  • Baird, M.E., Ralph, P.J., Wild-Allen, K., Rizwi, F. & Steven, A.D.L. (2013). A dynamic model of the cellular carbon to chlorophyll ratio applied to a batch culture and a continental shelf ecosystem. Limnol. Oceanogr. 58: 1215-1226.Web of ScienceGoogle Scholar

  • Bigidare, R.R., Morrow, J.H., & Kiefer D.A. (1989a). Derivative analysis of spectral absorption by photosynthetic pigments in the Eastern Sargasso Sea. J. Mar. Res. 47: 323 - 341.CrossrefGoogle Scholar

  • Bidigare, R.R., Schofield, O. & Prezelin, B.B. (1989b) Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803 (DC2), Mar. Ecol. Prog. Ser. 56: 177-188.Google Scholar

  • Bricaud, A., Claustre, H., Ras, J. & Oubelkheir, K. (2004).PubMedGoogle Scholar

  • Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations, J. Geophys. Res. 109: C11010. DOI: 10.1029/2004JC002419.CrossrefGoogle Scholar

  • Bricaud, A., Ciotti, A.M., & Gentili B. (2012). Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998-2009). Global Biogeochem. Cycles. 26: GB1010. DOI: 10.1029/2010GB003952.Web of ScienceCrossrefGoogle Scholar

  • Chase, A., Boss, E., Zanevel, R., Bricaud, A., Claustre, H., Ras, J., Dall’Olmo, G. & Westberry T.K. (2013). Decomposition of in situ particulate absorption spectra. Methods in Oceanography. 7: 110-124. DOI: 10.1016/j.mio.2014.02.002.CrossrefGoogle Scholar

  • Ciavatta, S., Torres, R., Martinez-Vicente, V., Smyth, T., Dall’Olmo, G., Polimene, L. & Allen J. (2014). Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modeling. Prog. Oceanogr. DOI: 10.1016/j. pocean.2014.06.002.Web of ScienceCrossrefGoogle Scholar

  • Cleveland, J.B.S. & Weidemann A.D. (1993). Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters. Limnol. Oceanogr. 38: 1321-1327.CrossrefGoogle Scholar

  • Cleveland, J.S. (1995). Regional models for phytoplankton absorption as a function of chlorophyll a concentration. J. Geophys. Res.: Oceans. 100(C7), 13333-13344.CrossrefGoogle Scholar

  • Coupel, P., Matsuoka, A., Ruiz-Pino, D., Gosselin, M., Claustre, H., Marie, D., Tremblay, J.-E., & Babin, M. (2014). Pigment signatures of phytoplankton communities in the Beaufort Sea. Biogeosciences Discuss. 11:14489-14530. DOI:10.5194/ bgd-11-14489-2014.CrossrefGoogle Scholar

  • Faust, M.A. & Norris, H.A. (1985). In vivo spectrophotometric analysis of photosynthetic pigments in natural populations of phytoplankton. Limnol. Oceanog. 30(6): 985, 1316-1322.CrossrefGoogle Scholar

  • Ferreira, A.D., Stramski, D., Garcia, C.A.E., Garcia, V.M.T., Ciotti, A.M. & Mendes, C.R.B. (2013). Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition. J. Geophys. Res.: Oceans. 118: 698-714.CrossrefWeb of ScienceGoogle Scholar

  • Fujiki, T. & Taguchi S. (2002). Variability in chlorophyll alpha specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. J. Plank. Res. 24: 859-874.CrossrefGoogle Scholar

  • Gómez, R.A., Weeks, A.R. & Boxall, S.R. (2001). The identification of phytoplankton pigments from absorption spectra. Int. J. Remote Sens. 22: 315-338CrossrefGoogle Scholar

  • Hsiu-Ping, L., Gwo-Ching, G. & Tung-Ming, H. (2002). Phytoplankton pigment analysis by HPLC and its application in algal community investigations. Bot. Bull. Acad. Sin. 43: 283 -290.Google Scholar

  • Hoepffner, N., & Sathyendranath S. (1993). Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter. J. Geophys. Res. 98 (C12): 22789-22803.CrossrefGoogle Scholar

  • IOCCG. (2000). Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters, In S. Sathyendranath [ed.], Reports of the International Ocean Colour Coordinating Group 3.Google Scholar

  • Jyothibabu, R., Madhu, N.V., Jayalakshmi, K.V., Balachandran, K.K., Shiyas, C.A., Martin, G.D. & Nair K.K.C. (2006). Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters - India). Est. Coast. Shelf Sci. 69: 505- 518.CrossrefGoogle Scholar

  • Jeffrey, S.W. & Vesk, M. (1997). Introduction to marine phytoplankton and their pigment signatures. In Jeffrey, S.W., Mantoura, R.F.C. & Wright S.W. (Eds.), Phytoplankton Pigments in Oceanography (pp37-84).UNESCO, Paris.Google Scholar

  • Kan, K.S. & Thornber, J.P. (1976). The light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardi. Plant Physiol. 57: 47-52.CrossrefGoogle Scholar

  • Kishino, M., Takahashi, M., Okami, N. & Ichimura, S. (1985). Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci. 37: 634-642.Google Scholar

  • Kishino, M., Okami, N., Takahashi, M. & Ichimura, S. (1986). Light utilization efficiency and quantum yield of phytoplankton in a thermally stratified sea. Limnol. Oceanogr. 31: 557-566.CrossrefGoogle Scholar

  • Kyewalyanga, M.N., Platt, T., Sathyendranath, S., Lutz, V.A. & Stuart, V. (1998). Seasonal variations in physiological parameters of phytoplankton across the North Atlantic. J. Plank. Res. 20: l7- 42.Google Scholar

  • Louchard, E.M., Reid, R.P., Stephens, C.F., Davis, C.O., Leathers, R.A., Downes, T.V. & Maffione, R. (2002). Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Opt. Express.,10(26): 1573 - 1584.CrossrefPubMedGoogle Scholar

  • Mann, J.E. & Myers J. (1986). On pigments, growth and photosynthesis of Phaeodactylum tricornutum. J. Phycol. 4: 349-355.CrossrefGoogle Scholar

  • Maske, H. & Haardt, H. (1987). Quantitative in vivo absorption spectra of phytoplankton: Detrital absorption and comparison with fluorescence excitation spectra. Limnol. Oceanogr. 32: 620-633.CrossrefGoogle Scholar

  • Mao, Z., Stuart, V., Pan, D., Chen, J., Gong, F., Huang, H. & Zhu, Q. (2010). Effects of phytoplankton species composition on absorption spectra and modeled hyperspectral reflectance. Ecological Informatics. 5: 359-366.CrossrefWeb of ScienceGoogle Scholar

  • Millie, D.F., Kirkpatrick, G.J., Vinyard, B.T. (1995). Relating photosynthetic pigments and in vivo optical density spectra to irradiance for the Florida red-tide dinoflagellate Gymnodinium breve. Mar. Ecol. Prog. Ser. 120: 65-75.CrossrefGoogle Scholar

  • Millie, D.F., Schofield, O., Kirkpatrick, G.J., Johnsen, G., Tester, P.A. & Vinyard, B.T. (1997). Phytoplankton pigments and absorption spectra as potential ‘Biomarkers’ for harmful algal blooms: a case study of the Florida red-tide dinoflagellate, Gymnodinium breve. Limnol. Oceanogr . 42:1240-1251.CrossrefGoogle Scholar

  • Minu, P, Shaju, S.S., Ashraf, P.M. & Meenakumari, B. (2014). Phytoplankton community characteristics in the coastal waters of southeastern Arabian sea. Acta Oceanol. Sin. 33(12): 170-179.Web of ScienceCrossrefGoogle Scholar

  • Mitchell, B.G. & Kiefer D.A. (1988). Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean. Deep-Sea Res. 35: 665-689.Google Scholar

  • Mitchell, B.G. (1990). Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). Ocean Optics. 1302: 137-148.Google Scholar

  • Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res, 93: 10749-10768.CrossrefGoogle Scholar

  • Morel, A & Bricard, A. (1981). Theoretical results concerning light absorption in discrete medium, and application to specific absorption of phytoplankton, Deep-Sea Res. Part A. 28A: 1375-1393.Google Scholar

  • Ong, L.J., Glazer, A.N., & Waterbury J.B. (1986). An unusual phycoerythrin from a marine cyanobacterium, Science. 224: 80- 83.CrossrefGoogle Scholar

  • Prezelin, B.B. & Alberte, R.S. (1978). Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates. Proc.Nat. Acad. Sci. USA. 75: 1801-1804.CrossrefGoogle Scholar

  • Roesler, C.S. & Barnard A.H. (2014). Optical proxy for phytoplankton biomass in the absence of photophysiology: Rethinking the absorption line height. Methods in Oceanography. 7; 79-94. DOI: 10.1016/j.mio.2013.12.003.CrossrefGoogle Scholar

  • Rosado-Torres, M.A. (2008) Evaluation and development of biooptical algorithms for chlorophyll retrieval in western Puerto Rico. Ph.D thesis. University of Puerto Rico, Puerto Rico.Google Scholar

  • Savitzky, A. & Golay, M.J.E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem.36: 1627 - 1639.CrossrefGoogle Scholar

  • Shaw, P.J. & Purdie, D.A. (2001). Phytoplankton photosynthesisirradiance parameters in the near-shore UK coastal waters of the North Sea: temporal variation and environmental control. Mar. Ecol. Prog. Ser. 216: 83-94.CrossrefGoogle Scholar

  • Stramski, D., Babin, M. & Woz´niak, S.B. (2007). Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater. Limnol. Oceanogr. 52(6): 2418-2433.CrossrefWeb of ScienceGoogle Scholar

  • Suzuki, K., Handa, N., Kiyosawa, H. & Ishizaka, J. (1997). Temporal and spatial distribution of phytoplankton pigments in the central Pacific Ocean along 175°E during the boreal summers of 1992 and 1993. J. Oceanogr. 53: 386 - 393.Google Scholar

  • Suzuki, K., Hattori-Saito, A., Sekiguchi, Y., Nishioka, J., Shigemitsu, M., Isada, T., Liu, H., & McKay R.M.L. (2014). Spatial variability in iron nutritional status of large diatoms in the Sea of Okhotsk with special reference to the Amur River discharge. Biogeosciences. 11; 2503-2517. DOI:10.5194/bg-11-2503-2014.Web of ScienceCrossrefGoogle Scholar

  • Tomas, C.R. (1997). Identifying marine phytoplankton, New York: Academic Press, USA.Google Scholar

  • Tzortziou, M., Subramaniam, A., Herman, J., Gallegos, C., Neale, P., & Hardingjr, L. (2007). Remote sensing reflectance and inherent optical properties in the mid Chesapeake Bay. Estuar. Coast. Shelf. Sci. 72: 16-32.Web of ScienceCrossrefGoogle Scholar

  • Vijayan, A.K. & Somayajula, S.A. (2014). Effect of accessory pigment composition on the absorption characteristics of dinoflagellate bloom in a coastal embayment. Oceanologia. 56(1): 107-124.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2014-11-20

Accepted: 2015-03-18

Published Online: 2015-09-30

Published in Print: 2015-09-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 3, Pages 282–293, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0027.

Export Citation

Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vakkat Poonat Souda, Punathil Minu, Aneesh Anand Lotliker, Sudheesan Sushama Shaju, and Pachareentavita Muhamed Ashraf
Arabian Journal of Geosciences, 2020, Volume 13, Number 2
Shaju S.S., Sreekutty C. Prasad, Vishnu P.S., Amir Kumar Samal, Nandini Menon, Nashad M., K. Avarachen Mathew, A.K. Abdul Nazar, and Grinson George
Regional Studies in Marine Science, 2019, Volume 29, Page 100618
Nariane Bernardo, Enner Alcântara, Fernanda Watanabe, Thanan Rodrigues, Alisson do Carmo, Ana Carolina Campos Gomes, and Caroline Andrade
Water, 2019, Volume 11, Number 2, Page 229
P.S. Vishnu, S.S. Shaju, S.P. Tiwari, Nandini Menon, M. Nashad, C. Ajith Joseph, Mini Raman, Mohamed Hatha, M.P. Prabhakaran, and A. Mohandas
International Journal of Applied Earth Observation and Geoinformation, 2018, Volume 66, Page 184
Lin Wei, Kang Su, Siqi Zhu, Hao Yin, Zhen Li, Zhenqiang Chen, and Migao Li
Spectroscopy Letters, 2017, Volume 50, Number 1, Page 59

Comments (0)

Please log in or register to comment.
Log in