Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 44, Issue 3

Issues

Genetic diversity of the non-native crab Rhithropanopeus harrisii (Brachyura: Panopeidae) in the Polish coastal waters − an example of patchy genetic diversity at a small geographic scale

Joanna Hegele-Drywa
  • Corresponding author
  • Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicolas Thiercelin
  • Biologie I, Institute of Zoology, Universität Regensburg, Universitätstrasse 31, 93040 Regensburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph D. Schubart
  • Biologie I, Institute of Zoology, Universität Regensburg, Universitätstrasse 31, 93040 Regensburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monika Normant-Saremba
  • Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/ohs-2015-0029

Abstract

The American panopeid crab species Rhithropanopeus harrisii (Gould, 1841) is listed as an non-native species in European waters. In Poland, it occurred in the 1950s at two sites at the Baltic Sea coast, the Dead Vistula River (DVR) and the Vistula Lagoon (VL). Almost 50 years later, two additional populations were identified in the Gulf of Gdańsk (GG) and its inner part, Puck Bay (PB). In the present study, we sequenced and analyzed part of the mitochondrial cytochrome oxidase subunit I gene of the four Polish populations of R. harrisii in order to assess their genetic diversity and connectivity. The analyzed sequences of a length of 989 base pairs revealed eight different haplotypes. The highest number of haplotypes (n=6) was observed in the population from GG, whereas the lowest (n=3) in VL. The most common haplotype was recorded in 37% of the analyzed individuals. Pairwise ΦST values were mostly non-significant, with the exception of the comparison between DVR and VL (ΦST = 0.267; P < 0.05) and between PB and VL (ΦST = 0.194; P < 0.05), indicating a restricted gene flow or different sources of colonization.

Keywords: Rhithropanopeus harrisii; coastal waters; genetic diversity; restricted gene flow; invasion biology

References

  • Avise, J.C. (2004). Molecular markers, natural history and evolution. Sinauer Associates, Suderland.Google Scholar

  • Boyle, T.M. Jr., Keith D. & Pfau R. (2010). Occurrence, reproduction, and population genetics of the estuarine mud crab Rhithropanopeus harrisii (Gould) (Decapoda, Panopidae) in Texas freshwater reservoirs. Crustaceana 83 (4): 493-505. doi:10.1163/001121610X492148.CrossrefGoogle Scholar

  • Cassone, B.J. & Boulding E.G. (2006). Genetic structure and phylogeography of lined shore crab, Pachygrapsus crassipes, along the northeastern and western Pacific coasts. Mar. Biol. 149:213-226. DOI: 10.1007/s00227-005-0197-9.CrossrefGoogle Scholar

  • Clement, M., Posada D. & Crandall K.A. (2000). TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9:1657-1659. doi:10.1046/j.1365-294x.2000.01020.x.CrossrefPubMedGoogle Scholar

  • Colautti, R.I. & MacIsaac H.J. ( 2004). A neutral terminology to define ‘invasive’ species. Div. Distr. (10): 135-141.Google Scholar

  • Cronin, T.W. (1982). Estuarine retention of larvae of the crab Rhithropanopeus harrisii. Estuarine, Coast. Shelf. Sci. (15): 207-220.Google Scholar

  • Cronin, T.W. & Forward R.B.Jr. (1986). Vertical migrations cycles of crab larvae and their role in larval dispersal. Bull. Mar. Sci. (39): 192-201. 313Google Scholar

  • Czerniejewski, P. (2009). Some aspects of population biology of the mud crab, Rhithropanopeus harrisii (Gould, 1841) in the Odra estuary, Poland. Oceanol. Hydrobiol. Stud. 38 (4): 49-62. DOI: 10.2478/v10009-009-0043-3.CrossrefGoogle Scholar

  • Czerniejewski, P. & Rybczyk A. (2008). Body weight, morphometry, and diet of the mud crab Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra Estuary, Poland. Crustaceana 81 (11): 1289-1299. doi. org/10.1163/156854008X369483.CrossrefGoogle Scholar

  • Demel, K. (1953). Nowy gatunek w faunie Bałtyku. Kosmos 2: 105-106.Google Scholar

  • Dlugosch, K.M. & Parker I.M. (2008). Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17 (1): 431-449.CrossrefPubMedGoogle Scholar

  • Emlet, R.B., McEdward L.R. & Strathmann R.R. (1987). Echinoderm larval ecology viewed from the egg. Echinoderm Stud. 2: 55-136.Google Scholar

  • Excoffier, L., Laval G. & Schneider S. (2005). Arlequin ver 3.0- an integrated software package for population genetics data analysis. Computational and Molecular Genetics Lab, Institute of Zoology, University of Berne, Berne.Google Scholar

  • Forward, R.B.Jr. (2009). Larval Biology of the crab Rhithropanopeus harrisii (Gould): A Synthesis. Biol. Bull. 216: 243-256.Google Scholar

  • Forward, R.B.Jr., Tankersley R.A. & Rittschof D. (2001). Cues of metamorphosis of Brachyuran crabs : an overview. Am. Zool. 41: 1108-1122.Google Scholar

  • Fowler, A.E., Forsström T., von Numers M. & Vesakoski O. (2013). The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: distribution and ecology. Aquat. Inv. 8 (1): 89-96. DOI: 0.3391/ai.2013.8.1.10.Google Scholar

  • Fu, Y.X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925.PubMedGoogle Scholar

  • Galil, B.S., Gollasch S., Minchin D. & Olenin S. (2009). Alien marine biota of Europe (in:) Handbook of Alien Species in Europe, Edited by DAISIE, Dordrecht: Springer, 93-104.Google Scholar

  • Grantham, B.A., Eckert G.L. & Shanks A.L. (2003). Dispersal potential of marine invertebrates in diverse habitats. Ecol. Appl. 13: 108-116. doi.org/10.1890/1051-0761(2003)013[0108:DPOMII]2.0.CO;2.CrossrefGoogle Scholar

  • Grozholz, E,D. & Ruiz G.M. (1996). Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus meanas. Biol. Cons. 78: 59-66.CrossrefGoogle Scholar

  • Hall, T.A. (1999). Bio Edit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41: 95-98.Google Scholar

  • Harpending, H.C. (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biol. 66: 591-600.Google Scholar

  • Harpending, H.C., Sherry S.T., Rogers A.R. & Stoneking M. (1993). The genetic structure of ancient human populations. Curr. Anthropol. 34:483-496. doi:10.1086/204195.CrossrefGoogle Scholar

  • Hedgecock, D. (1986). Is gene flow from pelagic larval dispersal important in adaptation and evolution of marine invertebrates? Bull. Mar. Scie. 39(2): 550-564.Google Scholar

  • Hegele-Drywa, J. & Normant M. (2009). Feeding ecology of the American crab Rhithropanopeus harrisii (Crustacea, Decapoda) in the coastal waters of the Baltic Sea. Oceanologia 51 (3): 361-375. doi.org/10.5697/oc.51-3.361.CrossrefGoogle Scholar

  • Hegele-Drywa, J. & Normant M. (2014). Non-native crab Rhithropanopeus harrisii (Gould, 1984) - a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia. 56 (1): 125-139. DOI: 10.5697/ oc.56-1.125.CrossrefGoogle Scholar

  • Holland, B.S. (2000). Genetics of marine bioinvasions. In: Sole-Cava C, Russo C, Thorpe J (eds.) Marine genetics, Developments in Hydrobiology. Kluwer Academic Publishers Netherlands 63-71.Google Scholar

  • Janas, U. (2005). Distribution and individual characteristics of the prawn Palaemon elegans (Crustacea, Decapoda) from The Gulf of Gdańsk and the Dead Vistula River. Oceanol. Hydrobiol. Stud. 34 (1): 83-91.Google Scholar

  • Janas, U., Wocial J. & Szaniawska A. (2004). Seasonal and annual changes in the macrozoobenthic populations of the Gulf of Gdańsk with respect to hypoxia and hydrogen sulphide, Oceanologia, 46(1): 85-102.Google Scholar

  • Janta, A. (1996). Recovery of the crab Rhithropanopeus harrisii (Gould) tridentatus (Maitland) population in the Dead Vistula Estuary (Baltic Sea, Poland). In: Crangon, Iss. Mar. Biol. Centre, Gdynia, Proc. 2nd Estuary Symp., Gdańsk, October 1993, 37-41.Google Scholar

  • Jensen, K.R. & Knudsen J. (2005). A summary of alien marine benthic invertebrates in Danish waters. Oceanol. Hydrobiol. Stud. 34 (1): 137-162.Google Scholar

  • Kujawa, S. (1957). Biology and culture of the crab Rhithropanopeus harrisii (Gould) subsp. tridentatus (Maitland) from Vistula Lagoon. Wszechświat 2: 57-59 (in Polish).Google Scholar

  • Kotta, J. & Ojaveer H. (2012). Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Estonian J. Ecol. 61 (4): 293-298. doi: 10.3176/eco.2012.4.04.CrossrefGoogle Scholar

  • Kruk-Dowgiałło, L. (1994). Distribution patterns and biomass of the phytobenthos from inner Puck Bay, Summer 1987. In: Kruk-Dowgiałło L, Ciszewski P (eds.) Puck Bay; renewal possibilities. IOŚ Warszawa 216pp (in Polish).Google Scholar

  • Kruk-Dowgialło, L. & Szaniawska A. (2008) Gulf of Gdańsk and Puck Bay. In: Schiewer U (eds.) Ecology of Baltic coastal waters. Ecol. Stud. No. 197, Springer-Verlag, Berlin- Heidelberg, 139-165.Google Scholar

  • Lawson Handley, L., Estoup A., Evans D.M., Thomas C.E., Lombaert E., Facon B., Aebi A. & Roy H.E. (2011). Ecological genetics of invasive species. BioControl 56: 409-428. DOI 10.1007/s10526-011-9386-2.CrossrefGoogle Scholar

  • Lee, C.E. (2002). Evolutionary genetics of invasive species. Trends Ecol. Evol. 17:386-391 doi:10.1016/S0169-5347(02)02554-5.CrossrefGoogle Scholar

  • Lee, C.E., Kieergard M., Gelembiuk G.W., Eads B.D. & Posiavi M. (2011) .Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution 65(8): 2229-2244 doi: 10.1111/j.1558-5646.2011.01308.x.PubMedCrossrefGoogle Scholar

  • Lee, T., Clarke M.E., Williams E., Szmant A.F. & Berger T. (1994). Evolution of the Tortugas Gyre and its influence on recruitment in the Florida Keys. Bull. Mar. Scie. 54: 621-646.Google Scholar

  • Le Roux, J.J. & Wieczorek A.M. (2009). Molecular systematics and population genetics of biological invasions: towards a better understanding of invasive species management. Ann. Appl. Biol. 154: 1-17. DOI: 10.1111/j.1744-7348.2008.00280.x.CrossrefGoogle Scholar

  • Levin, L.A., Huggett D., Myers P., Bridges T. & Weaver J. (1993). Rare-earth tagging methods for the study of larval dispersal by marine invertebrates. Limnol. Oceanogr. 38: 246-360.Google Scholar

  • Lowe, S., Browne M., Boudjelas S. & De Poorter M. (2000). 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union, 12 pp.Google Scholar

  • Łysiak-Pastuszak, E., Osowiecki A., Filipiak M., Olszewska A., Sapota G., Woroń J. & Krzymiński W. (2006). Preliminary assessment of the eutrophication status of selected areas in the Polish sector of the Baltic Sea according to the EU Water Framework Directive. Oceanologia 48 (2): 213-236.Google Scholar

  • Maitland, R.T. (1874). Naamlijst van Nederlandsche Schaaldieren. Tijdsch Nederl Deirk Ver 1: 228-269.Google Scholar

  • Markert, A., Raupach M.J., Segelken-Voigt A. & Wehrmann A. (2014). Molecular identification and morphological characteristics of native and invasive Asian brush-clawed crabs (Crustacea: Brachyura) from Japanese and German coasts: Hemigrapsus penicillatus (De Haan, 1835) versus Hemigrapsus takanoi Asakura & Watanabe 2005. Organ. Div. Evol. 14: 369-382 doi: 10.1007/s13127-014-0176-4.CrossrefGoogle Scholar

  • Michalski, K. (1957). Rhithropanopeus harrisii subsp. tridentata (Mtl.) in the Rivers Vistula and Motława. Przegląd Zoologiczny 1: 68-69 (in Polish).Google Scholar

  • Mooney, H.A. & Cleland E.E. (2001). The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the United States of America 98: 5446-5451.PubMedGoogle Scholar

  • Muirhead, J.R., Gray D.K., Kelly D.W., Ellis S.M., Heath D.D. & Macisac H.J. (2008). Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol. Ecol. 17:1020-1035. DOI: 10.1111/j.1365-294X.2008.03669.x.CrossrefPubMedGoogle Scholar

  • Nehring, S. & Leuchs H. (1999). Rhithropanopeus harrisii (Gould, 1841) (Crustacea: Decapoda) - ein amerikanisches Neozoon im Elbeästuar. Lauterbornia 35: 49-51.Google Scholar

  • Normant, M., Miernik J. & Szaniawska A. (2004). Remarks on the morphology and the life cycle of Rhithropanopeus harrisii tridentatus (Maitland) from the Dead Vistula River. Oceanol. Hydrobiol. Stud. 33 (4): 93-102.Google Scholar

  • Ojaveer, H., Galil B.S., Minchin D., Olenin S., Amorim A. et al. (2014). Ten recommendations for advancing the assessment and management of non-indigenous species in marine ecosystems. Mar. Pol. (44):160-165 doi:10.1016/j. marpol.2013.08.019.CrossrefGoogle Scholar

  • Osowiecki, A. (1998). Macrozoobenthos distribution in the coastal zone on the Gulf of Gdańsk - autumn 1994 and summer 1995. Oceanol. Stud. 27(4), 123-136.Google Scholar

  • Osowiecki, A. (2000). Directions of multiannual changes in the structure of Puck Bay macrozoobenthos, Ph.D. thesis, University of Gdańsk, Gdynia, 133 pp (in Polish).Google Scholar

  • Palumbi, S.R. (2001). The ecology of marine protected areas. In: Bertness M, Gaines SD, Hay ME (eds.) Marine Ecology; the new synthesis. Sinauer Sunderland, Massachusetts, USA.Google Scholar

  • Palumbi, S.R. (2003). Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13 (1): 146-158.Google Scholar

  • Parker, I.M., Rodrigues J. & Loik M.E. (2003). An evolutionary approach to understanding the biology of invasions: Local adaptations and general purpose genotype in the weed Verbascum thapus. Conserv. Biol.17: 59-72.Google Scholar

  • Patarnello, T., Volckaert F.A. & Castilho R. (2007). Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol. Ecol. 16 (21): 4426-4444. doi. org/10.1111/j.1365-294X.2007.03477.x.CrossrefGoogle Scholar

  • Paturej, E. (2006). Estuaries of the Polish Baltic coastal zone. Baltic coastal Zone 10: 83-96.Google Scholar

  • Petersen, C.H. (2006). Range expansion in the northeast Pacific by an estuary mud crab-a molecular study. Biol. Inv. 8:565-576 doi:10.1007/s10530-005-0160-1.CrossrefGoogle Scholar

  • Petersen, C.H. (2007). Historical demography and cotemporary spatial genetic structure of an estuarine crab in the northeast Pacific (Hemigrapsus oregonensis). Mar. Biol. 150: 1289-1300. DOI: 10.1007/s00227-006-0442-x.CrossrefGoogle Scholar

  • Pliński, M. (1999). Hydrobiology backgrounds. Wyd. Ocean. Sopot 138 pp (in Polish).Google Scholar

  • Poulin, J., Wellwer S.G. & Sakai A.K. (2005). Genetic diversity does not affect the invasiveness of fountain grass (Pennisetum setaceum) in Arizona, California and Hawaii. Div. Distrib. 11: 241-247.CrossrefGoogle Scholar

  • Projecto-Garcia, J., Cabral H. & Schubart C.D. (2010). High regional differentiation in a North American crab species throughout its native range and invaded European waters: a phylogeographic analysis. Biol. Inv. 12: 253-263. DOI. org/10.1007/s10530-009-9447-y.CrossrefGoogle Scholar

  • Pruszak, Z. (2004). Polish coast- two cases of human impact. Baltica 17 (1): 34-40.Google Scholar

  • Rodriguez G, Suarez H (2001) Anthropogenic dispersal of decapod crustaceans in aquatic environments. Intersciencia 26 (7): 282-288.Google Scholar

  • Rozas, J. & Rozas R. (1999). DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174-175 doi: 10.1093/ bioinformatics/15.2.174.CrossrefGoogle Scholar

  • Różyński, G., Bielecka M. & Margoński P. (2013). Transboundary water management in the Vistula Lagoon - regulations, problems and conflicts. Proceedings of the TWAM2013 International Conference & Workshops Aveiro-Portugal. Google Scholar

  • Rudnick, D.A., Halat K.M. & Resh V.H. (2000). Distribution, ecology and potential impacts of the Chinese mitten crab (Eriocheir sinensis) in San Francisco Bay, University of California, Berkeley, Water Resources Center Contribution 74 pp.Google Scholar

  • Rychter, A. (1997) Effect of anoxia on the behaviour, haemolymph lactate and glycogen concentrations in the mud crab Rhithropanopeus harrisii ssp. tridentatus (Maitland) (Crustacea: Decapoda). Oceanologia 39 (3): 325-335.Google Scholar

  • Rychter, A. (1999) Energy value and metabolism of the mud crab Rhithropanopeus harrisii tridentatus (Crustacea, Decapoda) in relation to ecological conditions. Ph.D. thesis. University of Gdańsk, Gdynia (in Polish).Google Scholar

  • Sakai, A.K., Allendorf F.W., Holt J.S., Lodge D.M., Molofsky J., Baughman S., Cabin R.J., Cohen J.E., Ellstrand N.C., McCauley D.E., O`Neil P., Parker I.M., Thompson J.N. & Weller S.G. (2001). The population biology of invasive species. Ann. Rev. Ecol. Syst. 32:305-332.CrossrefGoogle Scholar

  • Seebens, H., Gastner, M.T. & Blasius B. (2013). The risk of marine bioinvasions caused by global shipping. Ecol. Lett. 16 (6):782-790.Google Scholar

  • Scheltema, R.S. (1971). Larval dispersal as a means of genetic exchange between geographically separated populations of shallow-water benthic invertebrates. Biol. Bull. 140:284-322.CrossrefGoogle Scholar

  • Scheltema, R.S. (1975). Relationship of larval dispersal, gene flow and natural selection to geographic variations of benthic invertebrates in estuaries and along coastal regions. Estuarine Research 1: 372-389.Google Scholar

  • Schneider, S. & Excoffier L. (1999). Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079-1089.Google Scholar

  • Selkoe, K.A. & Toonen R.J. (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9: 615-629.Google Scholar

  • Tajima, F. (1989). The effect of change in population size on DNA polymorphism. Genetics 123:597-601.PubMedGoogle Scholar

  • Turoboyski, K. (1973). Biology and ecology of the crab Rhithropanopeus harrisii ssp. tridentatus. Mar. Biol. 23 (4): 303-313.Google Scholar

  • Urban, M., Phillips B., Skelly D. & Shine R. (2008). A toad more travelled: the heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171: 134-148. doi:10.1086/527494. d’Udekem d’Acoz, C. (2006). First record of the Asian shore crab Hemigrapsus sanguineus (De Haan, 1835) in Belgium (Crustacea, Brachyura, Grapsoidea). De Strandvlo 26: 74-82.CrossrefGoogle Scholar

  • Walk, M. & Modrzejewska H. (2011). Alien Species Introduction Risk Assessment on the Basis of Quality of Ballast Water Discharged at the Port of Gdynia. Technical Report No. RS -11/T-001. 45 pp.Google Scholar

  • Wiktor, K. (1990). The role of the common mussel Mytilus edulis L. in the biocenosis of the Gulf of Gdańsk. Limnologica 20(1):187-190.Google Scholar

  • Williams, A.B. (1984). Shrimps, lobsters, and crabs of the Atlantic coast of the eastern United States, Maine to Florida. Smithsonian Institution Press, Washington D.C. 550 pp.Google Scholar

  • Żmudziński, L. (1957). The Firth of Vistula zoobenthos. Prace MIR 9:454-485 (in Polish).Google Scholar

About the article

Received: 2015-03-29

Accepted: 2015-04-23

Published Online: 2015-09-30

Published in Print: 2015-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 3, Pages 305–315, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0029.

Export Citation

Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vassily A. Spiridonov and Anna K. Zalota
Journal of the Marine Biological Association of the United Kingdom, 2017, Volume 97, Number 3, Page 591
[2]
Kiran Liversage, Jonne Kotta, Robert Aps, Mihhail Fetissov, Kristiina Nurkse, Helen Orav-Kotta, Merli Rätsep, Tiia Forsström, Amy Fowler, Maiju Lehtiniemi, Monika Normant-Saremba, Riikka Puntila-Dodd, Timo Arula, Kalvi Hubel, and Henn Ojaveer
Science of The Total Environment, 2019, Volume 658, Page 1452
[3]
Angel Pérez-Ruzafa, Francesca De Pascalis, Michol Ghezzo, Jhoni Ismael Quispe-Becerra, Raquel Hernández-García, Irene Muñoz, Carlos Vergara, Isabel María Pérez-Ruzafa, Georg Umgiesser, and Concepción Marcos
Estuarine, Coastal and Shelf Science, 2018

Comments (0)

Please log in or register to comment.
Log in