Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 44, Issue 3

Issues

Long-term changes in the ecosystem of a lake (Lake Strzyżminskie) and an island induced by a colony of Great Cormorants (Phalacrocorax carbo sinensis L.)

Piotr Klimaszyk
  • Corresponding author
  • Department of Water Protection, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Brzeg
  • Department of Plant Ecology and Environment Protection, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/ohs-2015-0030

Abstract

Cormorants feed in aquatic ecosystems and transport a large amount of biomass and chemical substances to colonies or roosts situated on land adjacent to the water. This leads to significant enrichment of soils in nutrients. Some loads of nutrients may be transferred to a nearby lake. A long-term impact of cormorants may be followed by the destruction of vegetation beneath the colony. Within a few decades, cormorants lose places suitable for nesting or roosting and abandon the colonies. Then the content of nutrients in the soil decreases and natural regeneration of vegetation occurs. We found that despite the passage of several years since the abandonment of a cormorant colony, the concentration of nutrients in the soil remained high. Groundwater beneath the colony was also strongly enriched with nutrients. Thus, despite the absence of a bird being a source of nutrients, the area of the former colony constantly supplies nitrogen and phosphorus into the nearby lake. The occurrence of vegetation in the area of the former cormorant colony is limited to a few species. Nitrophilous black elder Sambucus nigra, usually creates a dense canopy preventing the light penetration, thereby reducing the growth of other plants.

Keywords: cormorant; soil fertilization; ground water; surface runoff; phosphorus; nitrogen; vegetation

References

  • Anderson, W.B. & Polis G.A. (1999). Nutrient fluxes from water to land: Seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118 : 324-332.Google Scholar

  • Boutin, C, Dobbie, T, Carpenter, D. & Hebert, C.E. (2011). Effect of Double Crested Cormorant on island vegetation, seedbank and soil chemistry: evaluating island restoration potential. Restoration Ecology 19(6): 720-727.CrossrefWeb of ScienceGoogle Scholar

  • Braun-Blanquet, J. (1964). Pflanzensoziologie. Springer; Wien, New York.Google Scholar

  • Breuning-Madsen, H., Ehlers B.C. & Borggaard O.K. (2008). The impact of perennial cormorant colonies on soil phosphorus status. Geoderma 148: 51-54.Web of ScienceGoogle Scholar

  • Breuning-Madsen, H., Ehlers-Koch, C., Gregersen, J. & Lojtnant, C. L. (2010) Influence of perennial colonies of piscivorous birds on soil nutrient contents in a temperate humid climate. Geografisk Tidsskrid 110: 25-35. DOI: 10.1080/00167223.2010.10669494.CrossrefGoogle Scholar

  • Cramp, S. & Simmons, W.R.P. (1977). The birds of the western Palearctic. Vol.1 Oxford University Press.Google Scholar

  • Ellis, J.C., Farina, J.M. & Witman J.D. (2006). Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. Journal of Animal Ecology 75: 565-574.Google Scholar

  • Goc, M., Iliszko, L. & Stempniewicz L. (2005). The largest European colony of Great Cormorant on the Vistula Spit (N Poland) - an impact of the forest ecosystem. Ecological Questions 6: 93-103.Google Scholar

  • Gwiazda, R., Jarocha, K. & Szarek-Gwiazda, E. (2010). Impact of small cormorant (Phalacrocorax carbo sinensis) roost on nutrients and phytoplankton assemblages in the litoral regions of submontane reservoir. Biologia 65: 742-748.Web of ScienceGoogle Scholar

  • Gwiazda, R., Woźnica, A., Łozowski, B., Kostecki, M. & Flis, A. (2014). Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir. Oceanological and Hydrobiological Studies 43(3): 418-426. DOI: 10.2478/s13545-014-0160-9.Web of ScienceCrossrefGoogle Scholar

  • Haynes, R.J. & Goh, K.M. (1978). Ammonium and nitrate nutrition of plants. Biological Reviews 53(4): 465-510.CrossrefGoogle Scholar

  • Hobara, S., Koba, K., Osono, T., Tokuchi, N., Ishida, A. & Kameda, K. (2005). Nitrogen and phosphorus enrichment and balance in forest colonized by cormorants: Implications of the influence of soil adsorption. Plant and Soil 268: 89-101.Google Scholar

  • Hobara, S., Osono, T., Koba, K., Tokuchi, N., Fujiwara, S. & Kameda. K. (2001). Forest floor quality and N transformations in a temperate forest affected by avian-derived N deposition. Water Air and Soil Pollution 130: 679-684.Google Scholar

  • Hofmeister, J., Hosek, J., Modry, M. & Rolecek J. (2009). The influence of light and nutrient availability on herb layer species richness in oak-dominated forests in central Bohemia. Plant Ecology 205(1): 57-75.Web of ScienceGoogle Scholar

  • Ishida, A. (1996). Effect of the common cormorant, Phalacrocorax carbo, on evergreen forest in two nest sites at Lake Biwa, Japan. Ecological Research 11: 193-200. DOI: 10.1007?BF02347685.Google Scholar

  • Kameda, K., Koba, K., Hobara, S., Osono, T. & Terai M. (2006). Pattern of natural 15 N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen. Hydrobiologia 567: 69-86.Google Scholar

  • Kameda, K., Ishida, A. & Narusue M. (2003). Population increase of the Great Cormorant Phalacrocorax carbo hanedae in Japan: conflicts with fisheries and trees and future pespectives. Vogelwelt 124: 27-33.Google Scholar

  • Klimaszyk, P., Piotrowicz R. & Rzymski P. (2015a). Changes in the ecosystem of shallow softwater lake induced by the Great Cormorant roosting colony. Journal of Limnology 74(1): 114-122. DOI: 10.4081/jlimnol.2014.994.CrossrefGoogle Scholar

  • Klimaszyk, P., Brzeg, A., Rzymski P. & Piotrowicz R. (2015b).Google Scholar

  • Black spots for aquatic and terrestrial ecosystems: impact of a perennial cormorant colony on the environment. Science of the Total Environment 517: 222-231. DOI: 10.1016/j. scitotenv.2015.02.067.CrossrefWeb of ScienceGoogle Scholar

  • Klimaszyk, P. (2012). May a cormorant colony be a source of coliform and chemical pollution in a lake? Oceanological and Hydrobiological Studies 41: 67-73. DOI: 10.2478/s13545-012-0008-0.CrossrefWeb of ScienceGoogle Scholar

  • Klimaszyk, P. & Joniak, T. (2011). Impact of Black Cormorant (Phalacrocorax carbo sinensis) on the transport of dissolved organic carbon from catchment area to lakes. Polish Journal of Soil Science 44(2): 161-166.Google Scholar

  • Klimaszyk, P., Joniak, T. & Rzymski, P. (2014). Roosting colony of cormorants (Phalacrocorax carbo sinensis L.) as a source of nutrients for the lake. Limnological Review 14(3): 111-119. DOI: 10.1515/limre-2015-01.CrossrefGoogle Scholar

  • Kolb, G., Jerling, L., Essenberg, C., Palmborg, C. & Hambäck, P.A. (2012). The impact of nesting cormorants on plant and arthropod diversity. Ecography 35: 726-740.Web of ScienceGoogle Scholar

  • Ligęza, S. & Smal H. (2003). Accumulation of nutrients in soils affected by perennial colonies of piscivorous birds with reference to biogeochemical cycles of elements. Chemosphere 52: 595-602.Google Scholar

  • Marion, L., Clergeau, P., Brient, L. & Bertu G. (1994). The importance of avian-contributed nitrogen (N) and phosphorus (P) to Lake Grand-Lieu, France. Hydrobiologia 279-280: 133-147.Google Scholar

  • McCann, K.D., Olson, L.D. & Hardy, P.G. (1997). Contribution of roosting cormorants to the nutrient budget of Lake Aldair (Ontario, Floryda). Proceedings of the Florida Lake Management Society. May 1997, Palm Beach: 89-90.Google Scholar

  • McCann, K.D., Olson, L.D. & Hardy P.G. (2000). Water quality changes in Lake Adair following removal of roosting cormorants. Proceedings of the Florida Lake Management Society 2000 Annual Conference, Hawk’s Cay Resort Duck Key, Florida: 54-55.Google Scholar

  • Mirek, Z., Piękoś-Mirkowa, H., Zając, A. & Zając, M. (2002). Flowering plants and pteridophytes of Poland. A checklist. Polish Academy of Sciences, W. Szafer Inst. of Bot., Kraków, Poland.Google Scholar

  • Mulder, C.P.H. & Keall, S.N. (2001). Burrowing seabirds and reptiles: impact on seeds and soils in an island forest in New Zealand. Oecologia 127: 350-360.Google Scholar

  • Nakamura, M., Yabe, T., Ishii,Y., Kamiya, K. & Aizaki, M. (2010). Seasonal changes of shallow aquatic ecosystems in a Bird Sanctuary pond. Journal of Water Environment Technology 8: 393-401.Google Scholar

  • Ochyra, R., Żarnowiec, J. & Bednarek-Ochyra, H. (2003). Census Catalogue of Polish Mosses. Polish Academy of Sciences, W. Szafer Inst of Bot, Kraków, Poland.Google Scholar

  • Osono, T., Hobara, S., Koba, K., Kameda, K. & Takeda H. (2006). Immobilization of avian excreta-derived nutrients and reduced lignin decomposition in needle and twig litter in a temperate coniferous forest. Soil Biology and Biochemistry 38: 517-525.Google Scholar

  • Pearson, J. & Steward, G.R. (1993). The deposition of atmospheric ammonia and its effect on plants. New Phytologist 125: 283-305.CrossrefGoogle Scholar

  • Prince, A.L. (1955). Appendix--Methods in soil analysis, In Bear, F.E. (ed), Chemistry of Soil. ACS Monograph 126, Reinhold Publishing Corporation, New York: 328-362.Google Scholar

  • Przybysz, J. (1997). Cormorant. Wyd. Lubuskiego Klubu Przyrodników, Świebodzin [in Polish].Google Scholar

  • Rusell, I., Broughton, B., Keller, T. & Carss, D. (2012). The INTERCAFE Cormorant Management Toolbox. Methods for reducing Cormorant problems at European fisheries. COST Action 635 Final Report III.Google Scholar

  • Sobczyński, T. & Joniak, T. (2009). Vertical changeability of physical-chemical features of bottom sediments in three lakes, in aspect type of water mixis and intensity of human impact. Polish Journal of Environmental Studies 18: 1093-1099.Google Scholar

  • Steffens, W. (2011). Great Cormorant Phalacrocorax carbo is threatening fish populations and sustainable fishing in Europe. American Fisheries Society Symposium 75:189-200.Google Scholar

  • Sutter, W. (1995). The Effect of Predation by Wintering Cormorants Phalacrocorax carbo on Grayling Thymallus thymallus and Trout (Salmonidae) Populations: Two Case Studies from Swiss Rivers. The Journal of Applied Ecology 32(1): 29-46.CrossrefGoogle Scholar

  • Van Reeuwiijk, L.P. (2002). Procedures of soil analysis, ISRIC, Wageningen.Google Scholar

  • Żółkoś, K. & Meissner, W. (2008). The effect of grey heron colony on the surrounding vegetation and the biometrical features of three undergrowth species. Polish Journal of Ecology 56(1): 65-74.Google Scholar

About the article

Received: 2015-02-14

Accepted: 2015-03-24

Published Online: 2015-09-30

Published in Print: 2015-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 3, Pages 316–325, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0030.

Export Citation

Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Piotr Klimaszyk and Piotr Rzymski
Hydrobiologia, 2016, Volume 771, Number 1, Page 13

Comments (0)

Please log in or register to comment.
Log in