Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 44, Issue 3


Growth rates of dinoflagellates along the Karachi coast assessed by the size fractionation method

Sonia Munir / Pirzada Jamal Ahmed Siddiqui / Tahira Naz / Zaib Un-nisa Burhan / Steve L. Morton
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/ohs-2015-0031


The in situ growth rates of dinoflagellates along the Karachi coast off Pakistan was studied by the size fractionated method during winter (February 2006) and summer (May 2007). The growth rate per day ranged from -2.87 to 2.3 d-1 (20 species) in winter and from 1.20 to 1.95 d-1 (13 species) in summer. Growth rates (μmax d-1) of the dominant species were as follows: Prorocentrum gracile, Prorocentrum minimum, Prorocentrum arcuatum (1.0-1.10), Protoperidinium steinii (0.92), Gonyaulax spinifera (0.69), Dinophysis acuminata (2.3), Dinophysis caudata (0.92), Ceratium lineatum, Prorocentrum micans (1.95), Gyrodinium sp. (1.88), Ceratium furca (1.70), and Alexandrium ostenfeldii (1.34). The declining growth rates were observed for Pyrophacus stein (-1.10), Scrippsiella trochoidea (-1.61 to -0.82), Prorocentrum donghaiense (-1.94) and Karenia mikimotoi (-2.48). Our results suggest that a higher temperature induce an increase in dinoflagellate growth rates.

Keywords: in situ growth rate; size fractionation method; dinoflagellates; Pakistan


  • Alam, M.G.M., Jahan, N., Thalib, L., Wei, B., Maekawa, T. (2001). Effect of the envoirnmental factors on the seasonally change of phytoplankton population in closed freshwater pond. Enviornmental. International., Vol 27(5): 361-371.Google Scholar

  • Baek, S. H., Shimode S. & Kikuchi, T. (2007). Reproductive ecology of the dominant dinoflagellate, Ceratium fusus in coastal area of Sagami Bay Japan. J. oceanogr. 63: 35-45. http://link.springer.com/article/10.1007%2Fs10872-007-0004-y.CrossrefGoogle Scholar

  • Balode, M., Purina, I., Bechemin, C. & Maestrini S.Y. (1998). Effects of nutrient enrichment on the growth rates and community structure of summer phytoplankton from the Gulf of Riga, Baltic Sea. J. Plank. Res. 20(12): 2251-2272. http://dx.doi.org/10.1093/plankt/20.12.2251.CrossrefGoogle Scholar

  • Bonin, J.J., Droop, M.R., Maestrini.S.Y. & Bonin,M.C. (1986). Physiological features of six microalgae to be used as indicators of seawater quality. Cryptogam. Algol., 7: 23-83.Google Scholar

  • Banse, K. (1992). Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum, London, p 409-440. http://dx.doi.org/10.1007/978-1-4899-0762-2_22CrossrefGoogle Scholar

  • Cannon, J. A. (1993). Growth in culture of toxic dinoflagellate Alexandrium minutum from Port River, South Australia. In (Smayda,T J and Shimizu, Y., editors), Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam: 741-745.Google Scholar

  • Calbet, A., Landry, M. R.(1999). Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnl. Oceang. 44: 1370-1380. http://dx.doi.org/10.4319/lo.1999.44.6.1370.CrossrefGoogle Scholar

  • Capriulo, G. M., Sherr, E. B. & Sherr, B. F. (1991). Trophic behavior and related community feeding activities of heterotrophic marine protists. In Reid, P.C., Turley, C.M., Burkill, P.H. (Eds.), Protozoa and their role in marine processes. Springer- Verlag, Berlin, pp. 219-265. http://dx.doi.org/10.1007/978-3-642-73181-5_16.CrossrefGoogle Scholar

  • Chang, J. & Carpenter, E. J. (1985). Blooms of the dinoflagellate Gyrodinium aureolum in a Long Island estuary: box model analysis of bloom maintenance. Mar. Biol. 89: 83-93. http:// link.springer.com/article/10.1007%2FBF00392880.Google Scholar

  • Chang, J.& Carpenter, W. (1991). Species-specific phytoplankton growth rates via diel DNA synthesis cycles. V. Application to natural populations in Long Island Sound. Mar. Ecol. Prog. Ser. 8:115-122. doi: 10.3354/meps078115.CrossrefGoogle Scholar

  • Furnas, M. J. (1982). Growth rates of summer nanoplankton (< 10 μm) populations in lower Narragansett Bay, Rhode Island, USA. Mar. Biol. 70: 105-I15. doi:10.1007/BF00397301.CrossrefGoogle Scholar

  • Furnas, M. J. (1990). In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plankton. Res., 12(6):1117-1151.CrossrefGoogle Scholar

  • Furnas, M. J. (1991). Net in situ growth rates of phytoplankton in an oligotrophic, tropical shelf ecosystem. Limnol. Oceanogr. 36:13-29. doi: 10.4319/lo.1991.36.1.0013.CrossrefGoogle Scholar

  • Furnas, M. J. & Mitchell, A. W. (1997). Biological oceanography of the Great Barrier Reef. In Proceedings of the Great Barrier Reef: Science, Use and Management National Conference, Townsville, 25-29 November 1996. Great Barrier Reef Marine Park Authority. 1: 75-87.Google Scholar

  • Garcés, E., Delgado, M. & Camp, J. (1997). Phased cell division in natural population of Dinophysis sacculus and the in situ measurement of potential growth rate. J. Plank. Res. 19: 2067-2077. doi: 10.1093/plankt/19.12.2067. CrossrefGoogle Scholar

  • Garces, E., Delgado, M., Maso M. & Camp, J. (1999). In situ growth rate and distribution of the ichtyotoxic dinoflagellate Gyrodinium corsicum Paulmier in an estuarine embayment (Alfacs Bay, NW Mediterranean Sea). J. Plank. Res. 21 (10): 1977-1991. http://dx.doi.org/10.1093/plankt/21.10.1977.CrossrefGoogle Scholar

  • Garcés, E., Vila, M., Maso, M., Sampedro, N., Giacobbe, M. G. & Penna, A. (2005). Taxon-specific analysis of growth and mortality rates of harmful dinoflagellates during bloom conditions. Mar. Ecol. Prog. Ser. 301:67-79. doi: 10.3354/ meps301067.CrossrefGoogle Scholar

  • Gentien, P., Lunven, M., Lazure, P., Youenou, A. & Crassous, M. P. (2007). Motility and auto-toxicity in Karenia mikimotoi (Dinophyceae). Phil. Trans. Res. Soc. 362: 1937-1946. doi: 10.1098/rstb.2007.2079.CrossrefGoogle Scholar

  • Gisselson, L. A., Carlesson, P., Graneli, E. & Pallon, J. (2002). Dinophysis blooms in the deep euphotic zone of the Baltic Sea: do they grow in the dark?.Harmful Algae. 401-418. doi:10.1016/0967-0645(93)90015-F.CrossrefGoogle Scholar

  • Goericke, R. & Welschmeyer N. A. (1993a). The carotenoidlabeling method: measuring specific rates of carotenoid synthesis in natural phytoplankton communities. Mar. Ecol. Prog. Ser. 98:157-171. doi:10.3354/meps098157.CrossrefGoogle Scholar

  • Goldman, J. C., McCarthy, J. J. & Peavey, D. G. (1979). Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature. 279:210-215. doi:10.1038/279210a0.CrossrefGoogle Scholar

  • Hansen, P. J. (1992). Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. J. Mar. Biol. 114 (2): 327-334. doi: 10.1007/BF00349535.CrossrefGoogle Scholar

  • Hansen, P. J., Bjornsen, P. K. & Hansen, B. (1997). Zooplankton grazing and growth: scaling within the 2-2000 μm body range. Limnol. Oceanogr. 42:687-704. doi: 10.4319/ lo.1997.42.4.0687.CrossrefGoogle Scholar

  • Jacobson D. M. & Anderson D. M. (1993). Growth and grazing rates of Protoperdinium hirobis Abe, athecate heterotrophic dinoflagellate. J. Plank. Res. 15: 723-736. doi:10.1093/ plankt/15.7.723.CrossrefGoogle Scholar

  • Jensen M. O. & Moestrup, O. (1997). Autecology of toxic dinoflagellate Alexandrium ostenfeldii: life history and growth at different temperatures and salinities. Eur. J. Phycol. 32:9-18. doi: 10.1080/09541449710001719325.CrossrefGoogle Scholar

  • Jeong, H.J., Kim, S.K., Kim, J.S., Kim, S.T., Yoo, Y.D., Yoon, J.Y. (2001). Growth and grazing rates of the heterotrophic dinoflagellate Polykrikos kofoidii on red-tide and toxic dinoflagellates. J. Euk. Microbiol., 48:298-308.PubMedGoogle Scholar

  • Kim, J. S., & Jeong, H. J. 2004. Feeding by the heterotrophic dinoflagellates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser., 280: 85-94.CrossrefGoogle Scholar

  • Landry, M. R. & Hassett, R. P. (1982). Estimating the grazing impact of marine microzooplankton. Mar. Bio. 67: 283-288. doi: 10.1007/BF00397668.CrossrefGoogle Scholar

  • Landry, M. R, Haas, L. W & Fagerness, V. L. (1984). Dynamics of microbial plankton communities: experiments in Kaneohe Bay, Hawaii. Mar. Ecol. Prog. Ser. 162:127-133. http://dx.doi.org/10.3354/meps016127.CrossrefGoogle Scholar

  • Landry, M. R. & Calbet, A. (2004). Microzooplankton production in the oceans. ICES. J. Mar. Sci. 61(4): 501-507. doi: 10.1016/j.icesjms.2004.03.011.CrossrefGoogle Scholar

  • Laws, E. A. (2013). Evaluation of In Situ Phytoplankton Growth Rates: A Synthesis of Data from Varied Approaches. Ann. Rev. Mar. Sci.5: 247-268. doi:10.1146/annurevmarine-121211-172258.CrossrefPubMedGoogle Scholar

  • Marasigan, A. N., Tamse, A. F. & Fukuyo, Y. (2001). Prorocentrum (Prorocentrales: Dinophyceae) populations on seagrassblade surface in Taklong Island, Guimaras Province, Philippines. Plank. Biol. Ecol. 48(2): 79-84.Google Scholar

  • Menden-Deuer, S., Lessard, E. J., Satterberg, J. & Grunbaum, D. (2005). Growth rates and starvation survivals of three species of the pallium-feeding, thecate dinoflagellate genus Protoperidinium. Aqua. Micro. Ecol. 41: 145-152. doi: 10.3354/ame041145.CrossrefGoogle Scholar

  • Morton S. L. & Tindall, D. R. (1995). Morphological and biochemical variability of the toxic dinoflagellate Prorocentrum lima isolated from three locations at Heron Island, Australia. J. Phvcol. 31:914-921. doi: 10.1111/j.0022-3646.1995.00914.x.CrossrefGoogle Scholar

  • Nakamura, Y., Suzuki, S. & Hiromi, J. (1995). Growth and grazing of a naked heterotrophic dinoflagellate, Gyrodinium dominans. Aquat. Micro. Ecol. 9: 157-164. doi: 10.3354/ ame009157.CrossrefGoogle Scholar

  • Nakamura, Y., Suzuki, S. Y. & Hiromi, J. (1995). Population dynamics of heterotrophic dinoflagellates during Gymnodinium mikimotoi redtide in the Seto Inland Sea. Mar. Ecol. Prog. Ser. 125:269-277. doi:10.3354/meps125269.CrossrefGoogle Scholar

  • Nishitani, G., Nagai, S., Sakiyama, S. & Kamiyama, T. (2008). Successful cultivation of toxic dinoflagellate Dinophysis caudata (Dinophyceae). Plankton. Benth. Res. 3(2): 78-85. http://dx.doi.org/10.3800/pbr.3.78.CrossrefGoogle Scholar

  • Olson, M. B. & Strom, S. L. (2002). Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep. Sea. Res. II. 49: 5969-5990. doi: 10.1016/S0967-0645(02)00329-6.CrossrefGoogle Scholar

  • Park, M. G., Kim, S., Kim, H. S., Myung, G., Kang, Y. G. & Yih, W. (2006). First successful culture of the marine dinoflagellate Dinophysis acuminate. Aquat. Micr. Ecol. 45: 101-106. doi:10.3354/ame045101.CrossrefGoogle Scholar

  • Pereza, V., Fernandeza, E., Maranona, E., Moran, X . A. G. & Zubkovc M. V. (2006). Vertical distribution of phytoplankton biomass, production and growth in the Atlantic subtropical gyres. Deep. Sea. Res I. (53): 1616-1634. doi: 10.1016/j. dsr.2006.07.008.Google Scholar

  • Reguera, B., Bravo, I., McCall, H. & Reyero, M. I. (1996). Phased cell division and other biological observations in field populations of Dinophysis spp. during cell cycle studies. In Yasumoto, T., Oshima, Y., Fukuyo, Y. (Eds.), Harmful and Toxic Algal Blooms. IOC, UNESCO, pp. 257-260.Google Scholar

  • Stolte, W. & Garces, E. (2006). Ecological aspects of harmful algal in situ population growth rates. In Graneli E., Turner J (eds) Ecology of Harmful Algae, Vol 189. Springer-Verlag, Berlin, p 139-152. http://dx.doi.org/10.1007/978-3-540-32210-8_11.CrossrefGoogle Scholar

  • Strom, S. L. (1991). Growth and grazing rates of the herbivorous dinoflagellate Gymnodinium sp. from the open subarctic Pacific Ocean. Mar. Ecol. Prog. Ser. 78:103-113. http://dx.doi.org/10.3354/meps078103.CrossrefGoogle Scholar

  • Strom S. L. & Buskey, E. J. (1993). Feeding, growth and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38 (5):965-977. http://dx.doi.org/10.4319/lo.1993.38.5.0965.CrossrefGoogle Scholar

  • Strom, S. L. & Strom, M. W. (1996). Microplankton growth, grazing, and community structure in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 130:229-240. http://dx.doi.org/10.3354/meps130229.CrossrefGoogle Scholar

  • Strom, S. L. & Morello, T. A. (1998). Comparative growth rates and yields of ciliates and heterotrophic dinoflagellates. J. Plank. Res. 20(3): 571-584. http://dx.doi.org/10.1093/plankt/20.3.571.CrossrefGoogle Scholar

  • Strom, S. L., Brainard, M. A., Holmes, J. & Olson, M. B. (2001). Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters. Mar Bio. 138: 355-368. doi: 10.1007/s002270000461.CrossrefGoogle Scholar

  • Strom, S. L., Macri, E. L., & Olson, M. B. (2007). Microzooplankton grazing in the coastal Gulf of Alaska:Variations in top-down control of phytoplankton. Limnol. Oceanogr. 52(4): 1480-1494. http://dx.doi.org/10.4319/lo.2007.52.4.1480.CrossrefGoogle Scholar

  • Sommer, U. (1989). Maximal growth rates of Antarctic phytoplankton only a weak dependence on cell size. Limnol. Oceanogr., 34(6):1109-1112.Google Scholar

  • Utermohl, H. 1958. Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Ass. Intern. Limnol. Théor., 9: 1-38.Google Scholar

  • Verity, P. G., Stoecker, D. K., Sieracki, M. E., Burkill, P. H., Edwards, E. S. & Tronzo, C. R. (1993). Abundance, biomass and distribution of heterotrophic dinoflagellates during the North Atlantic spring bloom. Deep. Sea. Res. II. 40 (1 & 2): 227-244. http://dx.doi.org/10.1016/0967-0645(93)90015-f.CrossrefGoogle Scholar

  • Wang, D., Sun, J., Song, S., Luan, Q., Joey, M. 2007. Preliminary study on different nutrient pools supplies for the phytoplankton growth in the Jiaozhou Bay in China in the fall of 2004. Acta oceanologica, sinica., 26(3): 110-120.Google Scholar

About the article

Received: 2015-01-02

Accepted: 2015-03-09

Published Online: 2015-09-30

Published in Print: 2015-09-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 3, Pages 326–334, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0031.

Export Citation

Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiaodong Li, Tian Yan, Rencheng Yu, and Mingjiang Zhou
Harmful Algae, 2019, Page 101702

Comments (0)

Please log in or register to comment.
Log in