Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 44, Issue 3

Issues

A method for assessing the coastline recession due to the sea level rise by assuming stationary wind-wave climate

Junjie Deng
  • Corresponding author
  • Faculty of Geosciences, University of Szczecin, ul. A. Mickiewicza 18, 70-383 Szczecin, Poland
  • School of Earth and Environmental Sciences, University of Wollongong, NSW 2522, Wollongong, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Harff
  • Faculty of Geosciences, University of Szczecin, ul. A. Mickiewicza 18, 70-383 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Semjon Schimanke / H. E. Markus Meier
  • Swedish Meteorological and Hydrological Institute, 60176, Norrköping, Sweden
  • Department of Meteorology, Stockholm University, 10691, Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/ohs-2015-0035

Abstract

The method introduced in this study for future projection of coastline changes hits the vital need of communicating the potential climate change impact on the coast in the 21th century. A quantitative method called the Dynamic Equilibrium Shore Model (DESM) has been developed to hindcast historical sediment mass budgets and to reconstruct a paleo Digital Elevation Model (DEM). The forward mode of the DESM model relies on paleo-scenarios reconstructed by the DESM model assuming stationary wind-wave climate. A linear relationship between the sea level, coastline changes and sediment budget is formulated and proven by the least square regression method. In addition to its forward prediction of coastline changes, this linear relationship can also estimate the sediment budget by using the information on the coastline and relative sea level changes. Wind climate change is examined based on regional climate model data. Our projections for the end of the 21st century suggest that the wind and wave climates in the southern Baltic Sea may not change compared to present conditions and that the investigated coastline along the Pomeranian Bay may retreat from 10 to 100 m depending on the location and on the sea level rise which was assumed to be in the range of 0.12 to 0.24 m.

Keywords: modelling; coastline changes; dynamic equilibrium; sediment budget estimation; climate change

References

  • Abdalla, S. and Cavaleri, L. (2002). Effect of wind variability and variable air density on wave modeling. Journal of Geophysical Research 107(C7): 17-1:17-17. DOI: 10.1029/2000JC000639.CrossrefGoogle Scholar

  • Ashton, A., Murray, A. & Arnoult, O. (2001). Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 414(November): pp.1-5. DOI: 10.1038/35104541.CrossrefGoogle Scholar

  • Ashton, A.D. & Murray, a. B. (2006a). High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. Journal of Geophysical Research 111(F4): p.F04011. DOI: 10.1029/2005JF000422.CrossrefGoogle Scholar

  • Ashton, A.D. & Murray, a. B. (2006b). High-angle wave instability and emergent shoreline shapes: 2. Wave climate analysis and comparisons to nature. Journal of Geophysical Research 111(F4): p.F04012.DOI: 10.1029/2005JF000423.CrossrefGoogle Scholar

  • Ashton, A.D., Walkden, M.J. a. & Dickson, M.E. (2011). Equilibrium responses of cliffed coasts to changes in the rate of sea level rise. Mar. Geol. 284: 217-229. DOI: 10.1016/j. margeo.2011.01.007.CrossrefGoogle Scholar

  • Bellafiore, D., Bucchignani, E., Gualdi, S., Carniel, S., Djurdjevic,V. and Umgiesser, G. (2012). Assessment of meteorological climate model inputs for coastal hydrodynamics modeling. Ocean Dynamics 62: 555-568. DOI: 10.1007/s10236-011-0508-2.CrossrefGoogle Scholar

  • Bonaldo, D., Benetazzo, A., Sclavo, M., Carniel, C. (2015). Modelling wave-driven sediment transport in a changing climate: a case study for Northern Adriatic sea (Italy). Regional Environmental Change 15(1): 45-55. DOI: 10.1007/ s10113-014-0619-7.CrossrefGoogle Scholar

  • Booij, N., Ris, R. C., & Holthuijsen, L. H. (1999). A thirdgeneration wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research 104(C4): 7649. DOI: 10.1029/98JC02622.CrossrefGoogle Scholar

  • Borowka, R.K., Osadczuk, K., Osadczuk, A., Witkowski, A., Skowronek, A., Reimann, T., Latalowa, M., Wawrzyniak- Wydrowska, B., Wozinski, R. & Duda, T. (2011). Stages of postglacial evolution of the Odra River mouth area, In Poland-Germany.- IAG/AIG Regional Conference 2011, February 18-22(p. 111). Addis Ababa, Ethiopia.Google Scholar

  • Bruun, P. (1962). Sea-level rise as a cause of shore erosion. Journal Waterways and Harbours Division 88(1-3): 117-130.Google Scholar

  • Bruun, P. (1988). The Bruun Rule of Erosion by Sea-Level Rise: A Discussion on Large-Scale Two- and Three-Dimensional Usages. Journal of Coastal Research 4(4): 627-648.Google Scholar

  • Bray, M. & Hooke, J. (1997). Prediction of soft-cliff retreat with accelerating sea-level rise. J. Coast. Res. 13: 453-467.Google Scholar

  • Brooks, S.M. & Spencer, T. (2012). Shoreline retreat and sediment release in response to accelerating sea level rise: Measuring and modelling cliffline dynamics on the Suffolk Coast, UK. Glob. Planet. Change 80-81: 165-179. DOI: 10.1016/j. gloplacha.2011.10.008.CrossrefGoogle Scholar

  • Burke L, Kura Y, Kassem K, Revenga C, Spalding M & McAllister D (2001). Pilot analysis of global ecosystems: coastal ecosystems. Washington DC: World Resources Institute.Google Scholar

  • Cooper, J. & Pilkey, O. (2004). Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global and Planetary Change 43(3-4): 157-171. DOI: 10.1016/j.gloplacha.2004.07.001.CrossrefGoogle Scholar

  • Deng, J., Harff, J., Giza, A., Hartleib, J., Dudzinska-Nowak, J., Bobertz, B., Furmanczyk, K. & Zölitz, R. (2013). Reconstructions of coastline changes by the comparisons of historical maps at the Pomeranian Bay, southern Baltic Sea. In Under the Sea: Archaeology and Paleolandscapes, Sept 23-27 (p. 98), Szczecin, Poland.Google Scholar

  • Deng, J., Zhang, W., Harff, J., Schneider, R., Dudzinska-nowak, J., Terefenko, P. & Furmańczyk, K. (2014). A numerical approach for approximating the historical morphology of wave-dominated coasts-A case study of the Pomeranian Bight, southern Baltic Sea. Geomorphology 204: 425-443. DOI: 10.1016/j.geomorph.2013.08.023.CrossrefGoogle Scholar

  • Dickson, M. E., Walkden, M. J. A. and Hall, J. W. (2007). Systemic impacts of climate change on an eroding coastal region over the twenty-first century. Climatic Change 84(2): 141-166. DOI: 10.1007/s10584-006-9200-9.CrossrefGoogle Scholar

  • Doscher, R., U, & Jones, C. (2002). The development of the regional coupled ocean-atmosphere model RCAO. Boreal Environment Research 7: 183-192.Google Scholar

  • Doscher R., Wyser K., Meier H. E. M., Qian M. & Redler R. (2010). Quantifying Arctic contributions to climate predictability in a regional coupled ocean-ice- atmosphere model. Clim. Dynam.34 (7-8): 1157-1176. DOI: 10.1007/ s00382-009-0567-y.CrossrefGoogle Scholar

  • Harff, J. & Lüth, F. (eds.). (2007). Sinking Coasts - Geosphere Ecosphere and Anthroposphere of the Holocene Southern Baltic Sea. Berlin: Ber.d.Römisch-Germanischen Kommission .Google Scholar

  • Harff, J. & Meyer, M. (2011). Coastlines of the Baltic Sea - Zones of Competition Between Geological Processes and a Changing Climate: Examples from the Southern Baltic. In Harff, J., Björck & S., Hoth, P. (eds.), The Baltic Sea Basin (pp. 149-164). Berlin, Heidelberg: Springer-Verlag. DOI: 10.1007/978-3-642-17220-5_7.CrossrefGoogle Scholar

  • HELCOM. (2013). Climate change in the Baltic Sea Area - HELCOM Thematic Assessment in 2013. Balt. Sea Environ. Proc. No. 137.Google Scholar

  • IPCC. (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.), Climate Change 2013 (1535). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar

  • Kraus, N.C., Larson, M., and Wise, R. (1999). Depth of closure in beachfill design. In Proceedings of the 12th National Conference on Beach Preservation Technology. January 27-29 1999 (pp. 271-286). St. Petersburg, Florida: Florida Shore and Beach Preservation Association.Google Scholar

  • Löptien, U., S. Martensson, H. E. M. Meier, & A. Höglund. (2013). Long-term characteristics of simulated ice deformation in the Baltic Sea (1962-2007), J. Geophys. Res. Oceans 118: 801-815. DOI: 10.1002/jgrc.20089.CrossrefGoogle Scholar

  • Meier, M., Hoglund, A. & Doscher, R. (2011). Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia 53: 193-227. DOI: 10.5697/ oc.53-1-TI.193.CrossrefGoogle Scholar

  • Meyer, M.; Harff, J.; Gogina, M., & Barthel, A. (2008). Coastline changes of the Darss-Zingst Peninsula-a modelling approach. Journal of Marine Systems 74: S147-S154.DOI: 10.1016/j.jmarsys.2008.03.023.CrossrefGoogle Scholar

  • Murray, a., Gopalakrishnan, S., McNamara, D. E., & Smith, M. D. (2013). Progress in coupling models of human and coastal landscape change. Computers & Geosciences 53: 30-38. DOI: 10.1016/j.cageo.2011.10.010.CrossrefGoogle Scholar

  • Nakicenovic, N. & Swart, R. Eds. (2000). Special report on emissions scenarios. In A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (599). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.Google Scholar

  • Nikulin, G., Kjellström, E., Hansson, U., Strandberg, G. & Ullerstig, A. (2011), Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations, Tellus 63A, 41-55, DOI: 10.1111/j.1600-0870.2010.00466.x.CrossrefGoogle Scholar

  • Pilkey, O. & Cooper, J. (2004). Society and sea level rise. Science 303: 1781-1782. DOI: 10.1126/science.1093515.CrossrefGoogle Scholar

  • Piotrowski A. (1999). Etapy rozwoju Bramy Świny, In Borówka R. K., Piotrowski A. & Wiśniowski Z., (eds.), Problemy geologii, hydrogeologii i ochrony środowiska wybrzeża morskiego Zachodniego Pomorza (pp. 215-241). Szczecin: Przewodnik LXX Zjazdu Naukowego PTG.Google Scholar

  • Ranasinghe, R. & Stive, M.J.F. (2009). Rising seas and retreating coastlines. Climatic Change 97: 465-468. DOI: 10.1007/ s10584-009-9593-3.CrossrefGoogle Scholar

  • Ranasinghe, R., Callaghan, D. & Stive, M.J.F. (2011). Estimating coastal recession due to sea level rise: beyond the Bruun rule. Clim. Change 110: 561-574. DOI: 10.1007/s10584-011-0107-8.CrossrefGoogle Scholar

  • Ranasinghe R, Duong TM, Uhlenbrook S et al. (2012). Climate-change impact assessment for inlet-interrupted coastlines. Nature Climate Change 3(1): 83-87. DOI:10.1038/ nclimate1664.CrossrefGoogle Scholar

  • Richter, a., Groh, a. & Dietrich, R. (2012). Geodetic observation of sea-level change and crustal deformation in the Baltic Sea region. Physics and Chemistry of the Earth Parts A/B/C 53-54: 43-53. DOI: 10.1016/j.pce.2011.04.011.CrossrefGoogle Scholar

  • Roelvink, Danom & Reniers, Ad. (2012). A Guide to Modelling Coastal Morphology. Singapore: World Scientific Publishing.Google Scholar

  • Rosati, J.D., Dean, R.G. & Walton, T.L. (2013). The modified Bruun Rule extended for landward transport. Mar. Geol. 340: 71-81.DOI: 10.1016/j.margeo.2013.04.018.CrossrefGoogle Scholar

  • Rosentau, A., Meyer, M., Harff, J., Dietrich, R. & Richter, A. (2007). Relative sea level change in the Baltic Sea since the Litorina Transgression. Zeitschrift fuer Geologische Wissenschaften 35(1/2): 3-16.Google Scholar

  • Schimanke, S., C. Dieterich & H.E.M. Meier. (2014). An algorithm based on sea-level pressure fluctuations to identify major Baltic inflow events, Tellus A 66: 23452. DOI: 10.3402/ tellusa.v66.23452.CrossrefGoogle Scholar

  • SCOR. (1991). The response of beaches to sea-level changes: a review of predictive models. Journal of Coastal Research 7: 895-921.Google Scholar

  • Soomere, T.& Viška M. (2014). Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. Journal of Marine Systems 129: 96-105. DOI: 10.1016/j. jmarsys.2013.02.001.CrossrefGoogle Scholar

  • Thieler, E. R., Pilkey Jr, O. H., Young, R. S., Bush, D. M. & Chai, F. (2000). The Use of Mathematical Models to Predict Beach Behavior for U.S. Coastal Engineering: A Critical Review. Journal of Coastal Research 16(1): 48-70.Google Scholar

  • U.S. Army Corps of Engineers. (1984). Shore protection manual (4th ed.). Washington, DC: .Department of the Army, U.S. Corps of Engineers.Google Scholar

  • Walkden, M. & Dickson, M. (2008). Equilibrium erosion of soft rock shores with a shallow or absent beach under increased sea level rise. Mar. Geol. 251: 75-84. DOI: 10.1016/j. margeo.2008.02.003.CrossrefGoogle Scholar

  • Weisse, R., v., Storch H., Callies, U., Chrastansky, A., Feser, F., Grabemann, I., Guenther, H., Pluess, A., Stoye, T., Tellkamp, J., Winterfeldt, J. & Woth, K. (2009). Regional meteo-marine reanalyses and climate change projections: Results for Northern Europe and potentials for coastal and offshore applications. Bulletin of the American Meteorological Society 90: 849-860. DOI:10.1175/2008BAMS2713.CrossrefGoogle Scholar

  • Woodroffe, C.D. & Murray-Wallace, C. V. (2012). Sea-level rise and coastal change: the past as a guide to the future. Quat. Sci. Rev. 54: 4-11. DOI: 10.1016/j.quascirev.2012.05.009.CrossrefGoogle Scholar

  • Zhang, W.Y., Harff, J., Schneider, R. & Wu, C.Y. (2011). A multiscale centennial morphodynamic model for the southern Baltic coast. Journal of Coastal Research 27: 890-917. DOI: 10.2112/JCOASTRES-D-10-00055.1.CrossrefGoogle Scholar

  • Zhang, W.Y., Harff, J. & Schneider, R. (2011a). Analysis of 50-year wind data of the southern Baltic Sea for modelling coastal morphological evolution-a case study from the Darss-Zingst Peninsula. Oceanologia 53: 489-518. DOI: 10.5697/oc.53-1- TI.489.CrossrefGoogle Scholar

  • Zhang, W.Y., Schneider, R. and Harff, J. (2012). A multiscale hybrid long-term morphodynamic model for wave-dominated coasts. Geomorphology 149-150: 49-61. DOI:10.1016/j.geomorph.2012.01.019.CrossrefGoogle Scholar

  • Zhang, W. Y., Deng, J., Harff, J., Schneider, R. & Dudzinskanowak, J. (2013). A coupled modelling scheme for Longshore sediment transport of wave-dominated coasts - A case study from the southern Baltic Sea. Coastal Engineering 72: 39-55. DOI: 10.1016/j.coastaleng.2012.09.003. CrossrefGoogle Scholar

About the article

Received: 2015-02-04

Accepted: 2015-05-11

Published Online: 2015-09-30

Published in Print: 2015-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 3, Pages 362–380, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0035.

Export Citation

Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alejandra R. Enríquez, Marta Marcos, Albert Falqués, and Dano Roelvink
Frontiers in Marine Science, 2019, Volume 6
[2]
Junjie Deng, Jiaxue Wu, Wenyan Zhang, Joanna Dudzinska-Nowak, and Jan Harff
Geomorphology, 2018
[3]
Junjie Deng, Brian G. Jones, Kerrylee Rogers, and Colin D. Woodroffe
Earth Surface Processes and Landforms, 2018
[4]
Jean-Jacques Goussard and Mathieu Ducrocq
Aquatic Conservation: Marine and Freshwater Ecosystems, 2017, Volume 27, Page 151
[5]
Junjie Deng, Colin D. Woodroffe, Kerrylee Rogers, and Jan Harff
Earth-Science Reviews, 2017, Volume 171, Page 254
[6]
Robinson Hordoir, Anders Höglund, Per Pemberton, and Semjon Schimanke
Climate Dynamics, 2017

Comments (0)

Please log in or register to comment.
Log in