Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 44, Issue 3


Hourly and daily variability in nitrogen and phosphorus in a lake restored by the hypolimnetic withdrawal method

Justyna Sieńska
  • Department of Water Protection Engineering, University of Warmia and Mazury, ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julita A. Dunalska
  • Corresponding author
  • Department of Water Protection Engineering, University of Warmia and Mazury, ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Szymański
  • Department of Water Protection Engineering, University of Warmia and Mazury, ul. Prawocheńskiego 1, 10-720 Olsztyn, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/ohs-2015-0036


An excess of nitrogen and phosphorus causes an increase in productivity, leading to degradation of a water reservoir. In order to reduce the eutrophication, protective and restoration methods are used. The objective of the paper was to determine the hourly and daily variability in nitrogen and phosphorus compounds in a lake restored by the hypolimnetic withdrawal method. In the epilimnion, the organic form dominates: 97% of Ptot and 75% of Ntot. Hourly variations in the concentration of the investigated compounds indicate that the highest values occurred at night and in the morning, whereas lower measurements were recorded at noon and in the evening. Such a distribution of the concentrations of nutrients during a day is strongly associated with photosynthesis. Along with depth, the proportion of this form decreased in favor of mineral forms. A high content of mineral phosphorus (70%) and ammonium ions (75%) in the hypolimnion results from their release from bottom sediments under anaerobic conditions. As a result of the generated thermocline, they are blocked and accumulated. At the experimental station, the concentration of mineral compounds was at a lower level than at the reference station since their amount was systematically reduced by the outflow of over-fertilized waters from the hypolimnion.

Keywords: nutrients; photosynthesis; primary production; eutrophication; restoration methods


  • Bednarz, T., Starzecka, A. & Mazurkiewicz-Boroń, G. (2002). Procesy mikrobiologiczne towarzyszące glonowym i sinicowym zakwitom wody. Wiadomości Botaniczne 46: 45-55.Google Scholar

  • Campbell, P. & Torgersen, T. (1980). Maintenance of iron meromixis by iron redeposition in a rapidly flushed monimolimnion. Can. J. Fish Aquat. Sci. 37: 1303-1313. DOI: 10.1139/f80-166.CrossrefGoogle Scholar

  • Careya, C.C. & Rydin, E. (2011). Lake trophic status can be determined by the depth distribution of sediment phosphorus. Limnol. Oceanogr. 56(6): 2051-2063. DOI:10.4319/lo.2011.56.6.2051.Web of ScienceCrossrefGoogle Scholar

  • Carignan, R. & Flett R. J. (1981). Post depositional mobility of phosphorus in lake sediments. Limnol. Oceanogr., 26: 361-366.CrossrefGoogle Scholar

  • Chełmicki, W. (2002). Woda: zasoby, degradacja, ochrona. Warszawa: Wydawnictwo Naukowe PWN.Google Scholar

  • Chojnacki, J. (1998). Podstawy ekologii wód. Szczecin: Wydawnictwo Akademii Rolniczej.Google Scholar

  • Dunalska, J. (2002). Influence of limited water flow in a pipeline on the nutrients budget in a lake restored by hypolimnetic withdrawal method. Polish Journal of Enviromental Studies 11(6): 631-637.Google Scholar

  • Dunalska, J.A. (2003). Impact of limited water flow in a pipeline on the thermal and oxygen conditions in a lake restored by hypolimnetic withdrawal method. Polish Journal of Enviromental Studies 12(4): 409-415.Google Scholar

  • Dunalska, J., Górniak D., Teodorowicz M. & Gąsecka K. (2004). Seasonal Distribution of Dissolved and Particulate Organic Carbon in the WaterColumn of a Meromictic Lake. Polish Journal of Environmental Studies 13(4): 375-379.Google Scholar

  • Dunalska, J.A., Wiśniewski, G. & Mientki, Cz. (2007). Assessment of multi-year (1956-2003) hypolimnetic withdrawal from Lake Kortowskie, Poland. Lake and Reservoir Management 23(4): 377-387. DOI:10.1080/07438140709354025.CrossrefWeb of ScienceGoogle Scholar

  • Dunalska J.A., Zieliński R.A., Bigaj I. & Szymański D. (2013). Indicators of Changes in the Phytoplankton Metabolism in the Littoral and Pelagial Zones of a Eutrophic Lake. Rocznik Ochrona Środowiska 15: 621-636.Google Scholar

  • Gächter, R.(1976). Die tiefenwasserableitung, ein Weg zur Sanierung von Seen. Schweiz. Z. Hydrol. 38:1-28.Google Scholar

  • Hanson, P.C., Carpenter, S.R., Kimura, N., Wu, C., Cornelius, S.P. & Kratz, T.K. (2008). Evaluation of metabolism models for free-water dissolved oxygen methods in lakes. Limnol. Oceanogr. Methods 6: 454-465. DOI: 10.4319/ lom.2008.6.454.CrossrefGoogle Scholar

  • Howarth, R.W. & Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnology and Oceanography 51: 364-376. DOI: 10.4319/lo.2006.51.1_ part_2.0364.CrossrefGoogle Scholar

  • Imboden, D. M. (1992). Possibilities and limitations of lake restoration: Conclusion for Lake Lugano. Aquatic Sciences 54 (3/4): 381-390.CrossrefGoogle Scholar

  • Jarosiewicz, A. & Hetmański, T. (2009). Sezonowa zmienność stężenia substancji biogenicznych w wodach jeziora Dobra (Pojezierze Pomorskie). Poziom trofii jeziora. Słupskie Prace Biologiczne 6: 71-79.Google Scholar

  • Kajak, Z. (1979). Eutrofizacja jezior. Warszawa: Wydawnictwo Naukowe PWN.Google Scholar

  • Kajak, Z. (2001). Hydrobiologia - limnologia: ekosystemy wód śródlądowych. Warszawa: Wydawnictwo Naukowe PWN.Google Scholar

  • Klausmeiser, C.A., Litchman, E., Daufresne, T. & Levin, S.A. (2004). Optimal nitrogen to phosphorus stoichiometry of phytoplankton. Nature 429: 171-174. DOI:10.1038/ nature02454.CrossrefGoogle Scholar

  • Li, Y., Waite, A.M., Gideon, G. & Hipsey, M. R. (2013). An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment. Ecological Modelling 252: 196- 213. DOI: 10.1016/j.ecolmodel.2012.06.021.CrossrefWeb of ScienceGoogle Scholar

  • Lossow, K. & Gawrońska, H. (2000). Jeziora - rekultywacja, przegląd metod. Przegląd Komunalny 9: 91-106.Google Scholar

  • Lossow, K., Gawrońska, H., Mientki, Cz., Łopata, M. & Wiśniewski. G. (2005). Jeziora Olsztyna, Stan troficzny, zagrożenia. Olsztyn: Studio Przygotowawcze Wydawnictw „Edycja” s.c.Google Scholar

  • Moss, B. (1990). Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367-378.Google Scholar

  • Nürnberg, G.K. (1987). Hypolimnetic withdrawal as a lake restoration technique, American Society of Civil Engineers, J. Environmental Engineering, Division 114:1006-1017.Google Scholar

  • Pełechata, A., Walna, B., Pełechaty, M., Kaczmarek, L., Ossowski, P. & Lorenc, M. (2009). Sezonowa dynamika zbiorowiska glonów i sinic planktonowych Jeziora Góreckiego na tle cech fizyczno-chemicznych wód powierzchniowych i stopnia rozwoju makrofitów. Wielkopolski Park Narodowy w badaniach przyrodniczych, Poznań-Jeziory.Google Scholar

  • Sand-Jensen, K. & Staehr, P.A. (2007). Scaling of pelagic metabolism to size, trophy and forest cover in small Danish lakes. Ecosystems 10: 127-41. DOI: 10.1007/s10021-006-9001-z.CrossrefWeb of ScienceGoogle Scholar

  • Schindler, D.W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., Beaty, K. G., Lyng, M. & Kasian, S. E. M. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 105: 11254-11258. DOI: 10.1073/pnas.0805108105.CrossrefGoogle Scholar

  • Singh, K.P. & Tripathi, S.K. (2000). Impact of environmental nutrient loading on the structure and functioning of terrestrial ecosystems. Current Science 79(3): 316-323.Google Scholar

  • Synowiec, A. (1965). Morfologia Jeziora Kortowskiego, Zesz. nauk. WSR Olszt. 21(508): 663-671.Google Scholar

  • Vrede, K., Heldal, M., Norland, S. & Bratbak, G. (2002). Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl. Environ.Microbiol. 68(6): 2965-2971. DOI:10.1128/ AEM.68.6.2965-2971.2002.PubMedCrossrefGoogle Scholar

  • Žic, V., Carić, M. & Ciglenečki, I. (2013). The impact of natural water column mixing on iodine and nutrient speciation in a eutrophic anchialine pond (Rogoznica Lake, Croatia). Estuarine, Coastal and Shelf Science 133: 260-272.DOI:10.1016/j.ecss.2013.09.008 Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-02-23

Accepted: 2015-04-13

Published Online: 2015-09-30

Published in Print: 2015-09-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 3, Pages 381–392, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0036.

Export Citation

Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in