Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 44, Issue 3

Issues

Differentiation of inland Ulva flexuosa Wulfen (Ulvaceae, Chlorophyta) from Western Poland

Andrzej S. Rybak
  • Corresponding author
  • Department of Hydrobiology, Adam Mickiewicz University in Poznań, ul. Wieniawskiego 1, 61-712 Poznań
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Czerwoniec
Published Online: 2015-09-30 | DOI: https://doi.org/10.1515/ohs-2015-0037

Abstract

The macroalgae representing the cosmopolitan Ulva flexuosa Wulfen species have been found in inland water ecosystems of Europe since the mid-1800s. The presence of the Ulva genus in waters of inland salt marshes was explained by high salinity of water in such systems. However, Ulva flexuosa thalli were found in lakes and rivers having no supply from strongly mineralized sources, either of natural or anthropogenic origin. The study focused only on populations of Ulva flexuosa subsp. pilifera (Kűtz.) M.J. Wynne and Ulva flexuosa subsp. paradoxa (C. Agardh) M.J. Wynne occurring in inland ecosystems isolated from seawater. The differentiation of inland U. flexuosa subsp. pilifera and subspecies paradoxa was assessed by using classical morphological data and molecular techniques. We found that only two subspecies of Ulva flexuosa Wulfen occur in inland water ecosystems of Poland. On the basis of the analysis combining morphological features with the ITS region and rbcL gene sequences, a small degree of differentiation of the two inland taxa was demonstrated. These two subspecies have high differentiation of the habitat niches. U. flexuosa subsp. paradoxa settled in habitats featuring high salinity levels, and the second subspecies pilifera occurred only in fresh waters.

Keywords: freshwater Ulva; inland Ulva; Ulva flexuosa; Enteromorpha flexuosa; habitat

References

  • Adams, N. M. (1994). Seaweeds of New Zealand. An Illustrated Guide. Christchurch, New Zealand: Canterbury University Press.Google Scholar

  • Alström-Rapaport, C. & Leskinen, E. (2002). Development of microsatellite markers in the green algae Enteromorpha intestinalis (Chlorophyta). Mol. Ecol. 2(4): 581-583. DOI: 10.1046/j.1471-8286.2002.00325.x. Alstrom-Rapaport, C., Leskinen, E. & Pamilo, P. (2010). Seasonal variation in the mode of reproduction of Ulva intestinalis in a brackish water environment. Aquat. Bot. 93(4): 244-249. DOI:10.1016/j.aquabot.2010.08.003.CrossrefGoogle Scholar

  • APHA (1998). Standard Methods for the Examination of Water and Waste Water, 20th Edition. Washington DC: American Public Health Association.Google Scholar

  • Blomster, J., Hoey, E. M., Maggs C. A. & Stanhope M. J. (2000). Species-specific oligonucleotide probes for macroalgae: molecular discrimination of two marine fouling species of Enteromorpha (Ulvophyceae). Mol. Ecol. 9: 177-186. DOI: 10.1046/j.1365-294x.2000.00850.x.CrossrefPubMedGoogle Scholar

  • Blomster, J., Maggs, C. A. & Stanhope M. J. (1998). Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British Isles. J. Phycol. 34: 319-340. DOI: 10.1046/j.1529-8817.1998.340319.x.CrossrefGoogle Scholar

  • Blomster, J., Maggs, C. A. & Stanhope M. J. (1999). Extensive intraspecific morphological variation in Enteromorpha muscoides (Chlorophyta) revealed by molecular analysis. J. Phycol. 35: 575-586. DOI: 10.1046/j.1529-8817.1999.3530575.x.CrossrefGoogle Scholar

  • Bonsdorff, E., Blomqvist, E. M., Mattila, J. & Norkko A. (1997). Coastal eutrophication: cause, consequences and perspectives in the archipelago areas of the northern Baltic Sea. Estuar. Coast. Shelf. S. 44: 63-72. DOI: 10.1016/S0272-7714(97)80008-x.CrossrefGoogle Scholar

  • Catling, P. M, & McKay S. M. (1980). Halophytic Plants in Southern Ontario. Can. Field. Nat. 94(3): 248-258.Google Scholar

  • Chapman, V. J. (1959). The Marine Algae of New Zealand. Part I. Myxophyceae and Chlorophyceae. The Journal of the Linnean Society of London, Botany LV(360).Google Scholar

  • Conner, D., Huddleston, D. J., Pfiester, L. A. & Thompson S. (1978). A third species of Enteromorpha (a marine chlorophycean) for Oklahoma. Proc. Okla. Acad. Sci. 58: 110.Google Scholar

  • Doyle, J. J. & Dickson E. E. (1987). Preservation of plant samples for DNA restriction endonuclease analysis. Taxon. 36: 715-722.CrossrefGoogle Scholar

  • Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic. Acids. Res. 32: 1792-7. DOI: 0.1093/nar/gkh340.Google Scholar

  • Guiry, M. D. & Guiry G. M. (2014, May). AlgaeBase. Worldwide electronic publication, National University of Ireland, Galway. Retrieved 27 May 2014 from http://www.algaebase.org.Google Scholar

  • Gupta V., Kumari P. & Reddy C. (2015). Development and Characterization of Somatic Hybrids of Ulva reticulata Forsskal (×) Monostroma oxyspermum (Kutz.) Doty. Front. Plant. Sci. 6(3): 1-15. DOI: 10.3389/fpls.2015.00003.CrossrefGoogle Scholar

  • Hall, T. (2007, May). BioEdit. Biological sequence alignment editor for Win95/98/NT/2K/XP. Carlsbad, CA: Ibis Biosciences. Retrieved 28 May 2014 from http://www.mbio.ncsu.edu/BioEdit/bioedit.html.Google Scholar

  • Hayden, H. S. & Waaland J. R. (2002). Phylogenetic systematics of the Ulvaceae (Ulvales, Ulvophyceae) using chloroplast and nuclear sequences. J. Phycol. 8: 1200-1212. DOI: 10.1046/j.1529-8817.2002.01167.x.CrossrefGoogle Scholar

  • Hayden, H. S., Blomster. J., Maggs, C. A., Silva, P. C., Stanhope, M. J. & Waaland J. R. (2003). Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 38: 277-294. DOI: 10.1080/1364253031000136321.CrossrefGoogle Scholar

  • Ichihara, K., Arai, S. & Shimada S. (2009a). cDNA cloning of a lectin-like gene preferentially expressed in freshwater from the macroalga Ulva limnetica (Ulvales, Chlorophyta). Phycol. Res. 57(2): 104-110. DOI: 10.1111/j.1529-8817.2011.01001.x.CrossrefGoogle Scholar

  • Ichihara, K., Arai, S., Uchimura, M., Fay, E. J., Ebata, H., Hiraoka, M. & Shimada S. (2009b). New species of freshwater Ulva, Ulva limnetica (Ulvales, Ulvophyceae) from the Ryukyu Islands, Japan. Phycol. Res. 57: 94-103. DOI: 10.1111/j.1440-1835.2009.00525.x.CrossrefGoogle Scholar

  • Ichihara, K., Mineur, F. & Shimada S. (2011). Isolation and temporal expression analysis of freshwater-induced genes in Ulva limnetica (Ulvales, Chlorophyta). J. Phycol. 47(3): 584-590. DOI: 10.1111/j.1529-8817.2011.01001.x.CrossrefGoogle Scholar

  • Ichihara, K., Miyaji, K. & Shimada S. (2013). Comparing the low-salinity tolerance of Ulva species distributed in different environments. Phycol. Res. 61(1): 52-57. DOI: 10.1111/j.1440-1835.2012.00668.x.CrossrefGoogle Scholar

  • Jimenez del Rio, M., Ramazanov, Z. & Garcia-Reina G. (1996). Ulva rigida (Ulvales, Chlorophyta) tank culture as biofilters for dissolved inorganic nitrogen from fishpond effluents. Hydrobiologia. 326/327: 61-66.Google Scholar

  • Kagami, Y., Arai, T., Mogi, Y., Kuwano, K. & Kawano S. (2008). Isolation and characterization of microsatellites in the green alga Ulva compressa (Chlorophyta). Cytologia. 73(4): 387-392. DOI: 10.1508/cytologia.73.387.CrossrefGoogle Scholar

  • Kawai, H., Shimada, S., Hanyuda, T., Suzuki, T. & Gamagori City Office (2007). Species diversity and seasonal changes of dominant Ulva species in Mikawa Bay deduced from rDNA ITS region sequences. Algae. 22: 221-8.CrossrefGoogle Scholar

  • Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16(2): 111-120.CrossrefGoogle Scholar

  • Koeman, R. P. T. & van den Hoek C. (1982a). The taxonomy of Enteromorpha Link, 1820, (Chlorophyceae) in The Netherlands I. The section Proliferae. Cryptogamie, Algologie. 3: 37-70.Google Scholar

  • Koeman, R. P. T. & van den Hoek C. (1982b) The taxonomy of Enteromorpha Link, 1820, (Chlorophyceae) in The Netherlands I. The section Enteromorpha. Arch. Hydrobiol. 32: 279-330.Google Scholar

  • Kostamo, K., Blomster, J, Korpelainen, H., Kelly, J., Maggs C. A. & Mineur F. (2008). New microsatellite markers for Ulva intestinalis (Chlorophyta) and the transferability of markers across species of Ulvaceae. Phycologia. 47(6): 580-587. DOI: 10.2216/08-16.1.CrossrefGoogle Scholar

  • Kraft, L. G. K., Kraft, G. T. & Waller, R. F. (2010). Investigations into southern Australian Ulva (Ulvophyceae, Chlorophyta) taxonomy and molecular phylogeny indicate both cosmopolitanism and endemic cryptic species. J. Phycol. 46: 1257-77. DOI: 10.1111/j.1529-8817.2010.00909.x.CrossrefGoogle Scholar

  • Leonardi, P. & Caceres E. J. (1988). Contribucion al conocimiento del ciclo biologico de Enteromorpha flexuosa subsp. pilifera (Chlorophyceae). Physis. 46(110): 29-39.Google Scholar

  • Leskinen, E. & Pamilo P. (1997). Evolution of the ITS sequences of ribosomal DNA in Enteromorpha (Chlorophyceae). Hereditas. 126: 17-23.PubMedCrossrefGoogle Scholar

  • Littler, M. M. & Littler D. S. (1980). The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Amer. Nat. 116: 25-44.CrossrefGoogle Scholar

  • Lougheed, V. L. & Stevenson R. J. (2004). Exotic marine macroalaga (Enteromorpha flexuosa) reaches bloom proportions in a coastal lake of Lake Michigan. J. Great. Lakes Res. 30: 538-544. DOI:10.1016/S0380-1330(04)70369-x.CrossrefGoogle Scholar

  • Mareš, J. (2009). Combined morphological and molecular approach to the assessment of Ulva (Chlorophyta, Ulvophyceae) in the Czech Republic. Master thesis. University of South Bohemia, Česke Budĕjovice.Google Scholar

  • Mareš, J., Leskinen, E., Sitkowska, M., Skacelova O. & Blomster J. (2011). True identity of the European freshwater Ulva (Chlorophyta, Ulvophyceae) revealed by a combined molecular and morphological approach. J. Phycol. 47(5): 1177-1192. DOI: 10.1111/j.1529-8817.2011.01048.x.CrossrefGoogle Scholar

  • McAvoy, K. M. & Klug J. L. (2005). Positive and negative effects of riverine imput on the estuarine green alga Ulva intestinalis (syn. Enteromorpha intestinalis) (Linneus). Hydrobiologia. 545: 1-9. DOI: 10.1007/s10750-005-1923-5.CrossrefGoogle Scholar

  • Messyasz, B. & Rybak A. (2009). The distribution of green algae species from the Ulva genera (syn. Enteromorpha; Chlorophyta) in Polish inland waters. Oceanol. Hydrobiol. St. 38(1): 121-138. DOI: 10.2478/v10009-009-0001-0.CrossrefGoogle Scholar

  • Messyasz, B. & Rybak A. (2011). Abiotic factors affecting the development of Ulva sp. (Ulvophyceae; Chlorophyta) in freshwater ecosystems. Aquat. Ecol. 45(1): 75-87. DOI 10.1007/s10452-010-9333-9.CrossrefGoogle Scholar

  • Messyasz, B., Czerwik-Marcinkowska, J., Massalski, A., Uher, B., Rybak, A., Szendzina, L., Pikosz, M. (2013). Morphological and ultrastructural studies on Ulva flexuosa subsp. pilifera (Chlorophyta) from Poland. Acta. Soc. Bot. Pol. 82(2): 157-163. DOI: 10.5586/asbp.2013.013.CrossrefGoogle Scholar

  • Narkko, A. & Bansdorff E. (1996). Rapid zoobenthos community response to accumulations of drifting alga. Mar. Ecol. Prog. Ser. 131:143-157.Google Scholar

  • Nave, J. (1863). Algen Mahrens und Schlesiens. Verh. Nat. Ver. Brunn. 2:15-58.Google Scholar

  • Neori, A., Cohen I. & Gordin H. (1991). Ulva lactuca biofilters for marine fishpond effluents. II. Growth rate, yield and C:N ratio. Bot. Mar. 34:483-489. DOI: 10.1515/ botm.1991.34.6.483.CrossrefGoogle Scholar

  • Nicholls, D. J., Tubbs C. R. & Haynes F. N. (1981). The effect of green algal mats on intertidal macrobenthic communities and their predators. Kiel Meeresforschung. 5: 511-520.Google Scholar

  • Oertli, H. J. (1964). The Venice System for the classification of marine waters according to salinity. Pubblicazioni della Stazione Zoologica di Napoli. 33: 1-9.Google Scholar

  • Page, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357-358. DOI: 10.1093/bioinformatics/12.4.357.CrossrefPubMedGoogle Scholar

  • Pfiester, L. A. & Felker W. O. (1976). Enteromorpha, a marine alga in Oklahoma. Proc. Okla. Acad. Sci. 56: 66.Google Scholar

  • Rabenhorst, L. (1849). Die Algen Sachsens, 2, Arnoldische Buchhandlung. Dresden und Leipzig.Google Scholar

  • Raffaelli, D., Hull S. & Milne H. (1989). Long-term changes in nutrients, weed mats and shorebirds in an estuarine system. Cah. Biol. Mar. 30: 259-270.Google Scholar

  • Reed, R. & Moffat, L. (2003). Copper toxicity and copper tolerance in Enteromorpha compressa (L.) Grev. J. Exp. Mar. Biol. Ecol. 1: 85-103. DOI: 10.1016/0022-0981(83)90173-9.CrossrefGoogle Scholar

  • Reed, R. H. & Russell G. (1978). Salinity fluctuations and their influence on „bottle brush“ morphogenesis in Enteromorpha intestinalis (L.) Link. British Phycol. J. 13: 149-153. DOI:10.1080/00071617800650171.CrossrefGoogle Scholar

  • Reinke, D. C. (1981). Enteromorpha, a Marine Alga in Kansas. Trans. Kans. Acad. Sci. 84(4): 228-230.CrossrefGoogle Scholar

  • Romano, C., Windows, J., Brinsley, M. D. & Staff F. J. (2003). Impact of Enteromorpha intestinalis mats on near-bed currents and sediment dynamics: flume studies. Mar. Ecol. Prog. Ser. 256: 63-74.CrossrefGoogle Scholar

  • Ronquist, F. & Huelsenbeck J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19(12): 1572-1574. DOI: 10.1093/bioinformatics/btg180.PubMedCrossrefGoogle Scholar

  • Rybak, A. & Messyasz B. (2011). Ulva flexuosa subsp. pilifera (Chlorophyta, Ulvophyceae) on the new freshwater locality in Poznań. Chroń. Przyr. Ojcz. 67(2): 182-188.Google Scholar

  • Rybak, A., Messyasz B. & Łęska B. (2012a). Bioaccumulation of alkaline soil metals (Ca, Mg) and heavy metals (Cd, Ni, Pb) patterns expressed by freshwater species of Ulva (Wielkopolska, Poland). Int. Rev. Hydrobiol. 97(6): 542-555. DOI: 10.1002/iroh.201201452.CrossrefGoogle Scholar

  • Rybak, A., Messyasz B. & Łęska B. (2012b). Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg). Chemosphere. 89(9): 1064-1074. DOI: 10.1016/j. chemosphere.2012.05.071.CrossrefGoogle Scholar

  • Rybak, A., Messyasz B. & Łęska B. (2013). The accumulation of metal (Co, Cr, Cu, Mn and Zn) in freshwater Ulva (Chlorophyta) and its habitat. Ecotoxicology. 22(3): 558-573. DOI: 10.1007/s10646-013-1048-y.PubMedCrossrefGoogle Scholar

  • Rybak. A., & Messyasz B. (2009). Occurrence of macroalgae from the Ulva genera (Ulvaceae; Chlorophyta) in the Wielkopolska region. Bad. Fizj. Pol. Zach. Ser. B. Bot. 58: 127-136.Google Scholar

  • Schroeder, G., Messyasz, B., Łęska, B., Fabrowska, J., Pikosz, M., Rybak, A. (2013) Biomass of freshwater algae as raw material for the industry and agriculture. Chem. Rev. 92(7): 1380-1384.Google Scholar

  • Sfriso, A., Marcomini A. & Pavoni B. (1987). Relationships between macroalgae biomass and nutrient concentrations in the hypertrophic area of the Venice lagoon. Mar. Environ. Res. 22: 297-312.CrossrefGoogle Scholar

  • Shimada, S., Hiraoka, M., Nabata, S., Iima, M. & Masuda M. (2003). Molecular phylogenetic analyses of the Japanese Ulva and Enteromorpha (Ulvales, Ulvophyceae), with special reference to the free-floating Ulva. Phycol. Res. 51: 99-108. DOI: 10.1046/j.1440-1835.2003.00296.x.CrossrefGoogle Scholar

  • Sundbäcak, K., Jonsson, B., Nilsson P. & Lindstrom, I. (1990). Impact of accumulating drifting macroalgae am a shallowwater sediment system: An experimental study. Mar. Ecol. Prog. Ser. 58: 261-274.CrossrefGoogle Scholar

  • Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar

  • Sze, P. (1998). A Biology of the algae. WCB/McGraw-Hill, Boston.Google Scholar

  • Taft, C. E. (1964). The occurrence of Monostoma and Enteromorpha in Ohio. Ohio J. Sci. 64(4): 272-273.Google Scholar

  • Tamura, K., Dudley, J., Nei, M. & Kumar S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24(8): 1596-1599. DOI: 10.1093/ molbev/msm092.Google Scholar

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei M. & Kumar S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28: 2731-2739. DOI: 10.1093/molbev/msr121.PubMedCrossrefGoogle Scholar

  • Tan, I. H., Blomster, J., Hansen, G., Leskinen, E., Maggs, C. A., Mann, D. G., Sluiman, H. J. & Stanhope, M. J. (1999). Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Mol. Biol. Evol. 16(8): 1011-1018. DOI: 10.1093/oxfordjournals.molbev.a026190.PubMedCrossrefGoogle Scholar

  • Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh D. & Foreman, K. (1997). Macroalgal blooms in coastal estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42: 1105-1118.CrossrefGoogle Scholar

  • Venice System, (1958). Symposium on the classification of brackish waters. The Venice System for the classification of marine waters according to salinity. Oikos. 9: 311-312.Google Scholar

  • Vinyard, C. W. (1966). Additions to the algal flora of Oklahoma. Southwest Nat. 11(2): 196-204.CrossrefGoogle Scholar

  • Wang. W. (1990). Literature review on duckweed toxicity testing. Environ. Res. 52: 7-2.PubMedCrossrefGoogle Scholar

  • Wolgemuth, E., Trnkova, J. & Sutory, K. (1984). Vyskyt slanomilne řasy Enteromorpha intestinalis (L.) Grev. na Třebičsku. Acta Scientiarum Naturalium Musei Moraviae Occidentalis Třebíč. 13: 53-57. Google Scholar

About the article

Received: 2015-02-23

Accepted: 2015-04-13

Published Online: 2015-09-30

Published in Print: 2015-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 3, Pages 393–409, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0037.

Export Citation

Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Chuner Cai, Lingke Wang, Lingjie Zhou, Peimin He, Binghua Jiao, and Shilin Chen
PLOS ONE, 2017, Volume 12, Number 9, Page e0184196

Comments (0)

Please log in or register to comment.
Log in