Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 44, Issue 4

Issues

Driving factors affecting spatial and temporal variations in the structure of phytoplankton functional groups in a temperate reservoir

Miloš Ćirić
  • Corresponding author
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bojan Gavrilović
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gordana Subakov Simić
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jelena Krizmanić
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Milka Vidović
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Goran Zebić
  • Scientific Institution, Department of Ecology and Technoecomonics, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd 6, PAK 125213, POB 473, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-09 | DOI: https://doi.org/10.1515/ohs-2015-0041

Abstract

During the twenty-five years of existence, water quality has declined and severe blooms of cyanobacteria have occurred in the Grlište Reservoir. Changes in phytoplankton functional groups over time and along horizontal and vertical gradients were investigated in the course of a one-year study in this water-supply reservoir. We identified 19 dominant taxa, classified into 12 phytoplankton associations. The presence of the codons C, P, D and S1 differentiated the transitional from the lacustrine part of the reservoir. The nitrogen-fixing cyanobacteria Dolichospermum viguieri dominated the phytoplankton community in the epilimnion during August and September, when the reservoir showed P-limitation, but the bloom was not observed. The driving factors that accounted for the main variability in phytoplankton functional groups along the seasonal and vertical profile were identified using the direct gradient analysis (RDA). Our results revealed the importance of two bipolar factors. The first factor explained the variability in phytoplankton due to thermal stratification and physical mixing, each process affecting the algal community in contrasting ways. The second factor was interpreted as reduction vs. oxidation processes. Positive correlation between stratification and water pumping by a drinking water plant indicated that human activities were not severe enough to break down the thermal stability of the reservoir and to cause a cyanobacterial bloom.

Keywords: cyanobacteria; drinking water plant; functional groups; phytoplankton; reservoir

References

  • APHA (1992). Standard Methods for the Examination of Water and Wastewater. 18th edition. Washington: American Public Health Association.Google Scholar

  • APHA (1995). Standard Methods for the Examination of Water and Wastewater. 19th edition. Washington: American Public Health Association.Google Scholar

  • APHA (1998a). Method 4500-NO2 B. In: L.S. Clesceri, A.E. Greenberg & A.D. Eaton (Eds.), Standard Methods for the Examination of Water and Wastewater (pp. 4-145). Washington DC: American Public Health Association.Google Scholar

  • APHA (1998b). Method 4500-P D. In: L.S. Clesceri, A.E. Greenberg & A.D. Eaton (Eds.), Standard Methods for the Examination of Water and Wastewater (pp. 4-145). Washington DC: American Public Health Association.Google Scholar

  • Becker, V., Huszar, V.L.M. & Crossetti L.O. (2009). Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia 628: 137-151. DOI: 10.1007/s10750-009-9751-7.Web of ScienceCrossrefGoogle Scholar

  • Becker, V., Caputo, L., Ordónez, J., Marcé, R., Armengol, J., Crossetti, L.O. & Huszar V.L.M. (2010). Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 44: 3345-3354. DOI: 10.1016/j.watres.2010.03.018.Web of ScienceCrossrefGoogle Scholar

  • Beutel, M., Horne, A., Taylor, W., Losee, R. & Whitney R. (2008). Effects of oxygen and nitrate on nutrient release from profundal sediments of a large, oligo-mesotrophic reservoir, Lake Mathews, California. Lakes & Reservoirs: Research & Management 24: 18-29.Web of ScienceGoogle Scholar

  • Boström, B., Andersen, J.M., Fleischer, S. & Jansson M. (1988). Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229-244. DOI: 10.1007/ BF00024907.CrossrefGoogle Scholar

  • Caputo, L., Naselli-Flores, L., Ordonez, J. & Armengol J. (2008). Phytoplankton distribution along trophic gradients within and among reservoirs in Catalonia (Spain). Freshwater Biol. 53: 2543-2556. DOI: 10.1111/j.1365-2427.2008.02082.x.CrossrefWeb of ScienceGoogle Scholar

  • Coesel, P.F.M. (1993). Poor physiological adaptation to alkaline culture conditions in Closterium acutum var. variabile, a planktonic desmid from eutrophic waters. Eur. J. Phycol. 28: 53-57. DOI: 10.1080/09670269300650081.CrossrefGoogle Scholar

  • Cole, G.A. (1983). Textbook of limnology. 3rd edition. Illinois: Waveland Press Inc., Prospect Heights.Google Scholar

  • Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollinger, U. & Zohary T. (1999). Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35: 403-424. DOI: 10.1046/j.1529-8817.1999.3520403.x.CrossrefGoogle Scholar

  • ISO 9297 (1989). Water Quality - Determination of chloride - Silver nitrate titration with chromate indicator (Mohr’s method). Geneva: International Organization for Standardization.Google Scholar

  • ISO 10260 (1992). Water Quality - Measurement of Biochemical Parameters - Spectrometric Determination of the Chlorophyll-a Concentration. Geneva: International Organization for Standardization.Google Scholar

  • Jørgensen, S.E., Löffler, H., Rast, W. & Straškraba, M. (2005). Lake and Reservoir Management, First Edition. Amsterdam: Elsevier BV.Google Scholar

  • Kalff, J. (2002). Limnology: Inland Water Ecosystems. New Jersey: Prentice Hall.Google Scholar

  • Komárková, J., Komárek, O. & Hejzlar J. (2003). Evaluation of the long term monitoring of phytoplankton assemblages in a canyon-shape reservoir using multivariate statistical methods. Hydrobiologia 504: 143-157. DOI: 10.1023/B:HYDR.0000008514.45771.aa.CrossrefGoogle Scholar

  • Kruk, C., Mazzeo, N., Lacerot, G. & Reynolds C.S. (2002). Classification schemes for phytoplankton: A local validation of a functional approach to the analysis of species temporal replacement. J. Plankton Res. 24: 901-912. DOI: 10.1093/plankt/24.9.901.CrossrefGoogle Scholar

  • Naselli-Flores, L. & Barone, R. (2005). Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85-99. DOI: 10.1007/s10750-005-1149-6.CrossrefGoogle Scholar

  • Padisák, J. & Reynolds, C.S. (1998). Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41-53. DOI: 10.1023/A:1003255529403.CrossrefGoogle Scholar

  • Padisák, J., Barbosa, F.A.R., Koschel, R. & Krienitz L. (2003). Deep layer cyanoprokaryota maxima are constitutional features of lakes: Examples from temperate and tropical regions. Arch. Hydrobiol., Special Issues, Advances in Limnology 58: 175-199.Google Scholar

  • Padisák, J., Crossetti, L.O. & Naselli-Flores L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1-19. DOI: 10.1007/s10750-008-9645-0.Web of ScienceCrossrefGoogle Scholar

  • Pedrós-Alió, C., Gasol, J.M. & Guerrero, R. (1987). On the ecology of a Cryptomonas phaseolus population forming a metalimnetic bloom in Lake Cisó, Spain: Annual distribution and loss factors. Limnol. Oceanogr. 32: 285-298.Google Scholar

  • Reynolds, C.S. (1976). Succession and vertical distribution of phytoplankton in response to thermal stratification in a lowland mere, with special reference to nutrient availability. J. Ecol. 64: 529-551.CrossrefGoogle Scholar

  • Reynolds, C.S. (2000). Phytoplankton designer - or how to predict compositional responses to trophic-state change. Hydrobiologia 424: 123-132. DOI: 10.1007/978-94-017-3488-2_11.CrossrefGoogle Scholar

  • Reynolds, C., Dokulil, M. & Padisák J. (2000). Understanding the assembly of phytoplankton in relation to the trophic spectrum: where are we now? Hydrobiologia 424: 147-152. DOI: 10.1023/A:1003973532706.CrossrefGoogle Scholar

  • Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo S. (2002). Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24: 417-428. DOI: 10.1093/plankt/24.5.417.CrossrefGoogle Scholar

  • Reynolds, C.S. (2006). The ecology of phytoplankton. Cambridge: Cambridge University Pres.Google Scholar

  • Serra, T., Vidal, J., Casamitjana, X., Soler, M. & Colomer J. (2007). The role of surface vertical mixing in phytoplankton distribution in a stratified reservoir. Limnol. Oceanogr. 52: 620-634.Web of ScienceGoogle Scholar

  • Sommer, U., Gliwicz, Z.M., Lampert, W. & Duncan A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433-471.Google Scholar

  • Stanković, S. (2005). Lakes of Serbia. Belgrade (RS): Zavod za udzbenike i nastavna sredstva. (In Serbian).Google Scholar

  • Straškrábová, V., Šimek, K. & Vrba J. (2005). Long-term development of reservoir ecosystems - changes in pelagic food webs and their microbial component. Limnetica 24: 9-20.Google Scholar

  • Svirčev, Z., Simeunović, J., Subakov-Simić, G., Krstić, S. & Vidović M. (2007). Freshwater cyanobacterial blooms and cyanotoxin production in Serbia in the past 25 years. Geogr. Pannonica 11: 32-38.Google Scholar

  • SZZZ (1990). Method P-IV-9a. In: S. Škunca-Milovanović, R. Feliks & B. Đurović (Eds.), Drinking Water - Standard Methods for Examination of Hygienic Correctness (pp. 134-136). Belgrade: Savezni zavod za zdravstvenu zaštitu & NIP Privredni pregled. (In Serbian).Google Scholar

  • ter Braak, C.J.F. & Šmilauer P. (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). New York, USA: Microcomputer Power, 500 pp.Google Scholar

  • Utermöhl, H. (1958). Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1-38.Google Scholar

  • Winder, M., Reuter, J.E. & Schladow S.G. (2009). Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B 276: 427-435.Web of ScienceGoogle Scholar

  • Xiao, L.J., Wang, T., Hu, R., Han, B.P., Wang, S., Qian, X., & Padisák J. (2011). Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res. 45: 5099-5109. DOI: 10.1016/j.watres.2011.07.012 CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-04-02

Accepted: 2015-06-01

Published Online: 2015-12-09

Published in Print: 2015-12-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 4, Pages 431–444, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0041.

Export Citation

Faculty of Oceanography and Geography, University of Gdansk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jing Cao, Zeying Hou, Zekun Li, Zhaosheng Chu, Pingping Yang, and Binghui Zheng
Science of The Total Environment, 2018, Volume 631-632, Page 1127
[2]
Slađana Popović, Ana Pantelić, Željka Milovanović, Jelena Milinkov, and Milka Vidović
Analytical Letters, 2017

Comments (0)

Please log in or register to comment.
Log in