Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 44, Issue 4


Trace metal concentrations in free-ranger, tube-dweller chironomid larvae and a weakly polluted fluvial sediment

Maria Grzybkowska
  • Corresponding author
  • Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lódź, ul. Banacha 12/16 90-237 Łódź, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Dukowska
  • Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lódź, ul. Banacha 12/16 90-237 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaromir Michałowicz
  • Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Leszczyńska
  • Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lódź, ul. Banacha 12/16 90-237 Łódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-09 | DOI: https://doi.org/10.1515/ohs-2015-0042


The objective of this study was to analyze macroinvertebrate assemblages dominated by Chironomidae (Diptera) and to assess the protective nature of these midges’ larval tubes against trace metals in the weakly polluted Bzura River. This low order lowland river flows through the Łódź City Municipal Area and is supplied by a large amount of organic matter from ecotones and a polluted roadside. Determination of metal content in sediments and chironomid tissue and tubes was conducted using atomic absorption spectroscopy. Our study has shown that the composition of chironomid assemblages was not determined by trace metals but rather by high organic enrichment, which caused the dominance of two species representing the same trophic group − gathering collectors − but differing in behavior. One of them belongs to free-rangers (Prodiamesa olivacea), while the other (Chironomus riparius) to tube-dweller larvae. Although the accumulation of certain trace metals in the tubes was found, the larvae of both types of behavior had a similar concentration of metals in their tissues, which proves effective metal detoxification in these insects.

Keywords: river; benthos; tubes; larvae; imagines; Chironomus riparius; Prodiamesa olivacea; detoxication


  • Armitage, P.D., Cranston, P.S. & Pinder, L.C.V. (1995). The Chironomidae. The biology and ecology of non-biting midges.Google Scholar

  • London: Chapman & Hall.Google Scholar

  • Benke, A. (1993). Concepts and patterns of invertebrate production in running waters. Verhandlungen des Internationalen Verein Limnologie 25: 15-31.Google Scholar

  • Berg, M.B. (1995). Larval food and feeding behavior. In P.D.Google Scholar

  • Armitage, P.S. Cranston & L.C.V. Pinder (Eds.), The Chironomidae. Biology and ecology of non-biting midges (pp. 136-168). London: Chapman & Hall.Google Scholar

  • Bervoets, L., Blust, R., De Wit, M. & Verheyen, R. (1997).Google Scholar

  • Relationships between river sediment characteristics and trace metal concentrations in tubificid worms and chironomid larvae. Environ. Pollut. 95: 345-356.PubMedGoogle Scholar

  • DOI: 10.1016/S0269-7491(96)00134-0.CrossrefGoogle Scholar

  • Bervoets, L., Solis, D., Romero, A.M., Van Damme, P.A. & Ollevier, F. (1998). Trace metal levels in chironomid larvae and sediments from a Bolivian River: impact of mining activities. Ecotox. Environ. Safe. 41: 275-283. DOI: 10.1006/ eesa.1998.1707.CrossrefGoogle Scholar

  • Brennan, A. & Mclachan, A.J. (1979). Tubes and tube-building in a lotic chironomid (Diptera) community. Hydrobiologia 67: 173-178. DOI: 10.1007/BF00126716.CrossrefGoogle Scholar

  • Broza, M., Halpern, M. & Inbar, M. (2000). Non-biting midges (Diptera; Chironomidae) in waste stabilization ponds: an intensifying nuisance in Israel. Water Science & Technology 42: 71-74.Google Scholar

  • Chaloner, D.T. & Wotton, R.S. (1996). Tube building by larvae of 3 species of midge (Diptera: Chironomidae). J. N. Am.Google Scholar

  • Benthol. Soc. 15: 300-307. DOI: 10.2307/1467278.CrossrefGoogle Scholar

  • Cummins, K.W. (1962). An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am. Midl. Nat. 67: 477-504. DOI: 10.2307/2422722.CrossrefGoogle Scholar

  • Cummins, K.W., Matousek, J. & Shackelford, A. (2005). Invertebrate functional group analysis for the freshwater creek watershed. Arcata, USA: Institute for River Ecosystems, Humbold State University.Google Scholar

  • Czerniawska-Kusza, I. (2007). Exploitation of changes in the structure of benthic macroinvertebrate and of the occurrence of deformations in Chironomus sp. larvae for assessing the ecological state of lowland rivers. In C. Rosik-Dulewska & M. Głowacki (Eds.), Environmental protection at university studies of nature (pp. 229-239). Opole: University of Opole (In Polish).Google Scholar

  • De Bisthoven, L.J., Van Looy, E., Ceusters, R., Gullentrops, F. & Ollevier, F. (1992). Densities of Prodiamesa olivacea (Meigen) (Diptera: Chironomidae) in a second order stream, the Laan (Belgium): relation to river dynamics. Neth. J. Aquatic Ecol. 26: 485-490.Google Scholar

  • Dukowska, M. & Grzybkowska, M. (2014). Coexistence of fish species in a large lowland river: food niche partitioning between small-sized percids, cyprinids and sticklebacks in submersed macrophytes. PLoS ONE 9(11). DOI:10.1371/ journal.pone.0109927.CrossrefGoogle Scholar

  • Dukowska, M., Grzybkowska, M., Marszał, L. & Zięba, G. (2009). The food preferences of three-spined stickleback, Gasterosteus aculeatus L., downstream of a dam reservoir. Oceanol. Hydrobiol. Stud. 38(2): 39-50. DOI: 10.2478/ v10009-009-0020-x.CrossrefGoogle Scholar

  • Dukowska, M., Michałowicz, J. & Grzybkowska, M. (2012). Metal accumulation in sediments and insect larvae in weakly polluted small lowland river. Pol. J. Ecol. 60(2): 351-362.Google Scholar

  • EU FWD Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. OJ L 327: 1-87.Google Scholar

  • Farag, A.M., Nimick, D.A., Kimball, B.A., Church, S.E., Harper, D.D. & Brumbaugh, W.G. (2007). Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River Watershed, Montana, and the role of colloids in metal uptake. Arch. Environ. Contam. Toxicol. 52: 397-409. DOI: 10.1007/s00244-005-0021-z.CrossrefGoogle Scholar

  • Ferrington, L.C.Jr. (1992). Habitat and sediment preferences of Axarus festivus larvae. Neth. J. Aquatic Ecol. 26: 347-354. DOI: 10.1007/BF02255261.CrossrefGoogle Scholar

  • Ferrington, L.C.Jr (2008). Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447-445. DOI: 10.1007/978-1-4020-8259-7_45.CrossrefGoogle Scholar

  • Grzybkowska, M. (1995). Impact of human-induced flow perturbation on the chironomid communities in the first order stream section of the Bzura River (Central Poland). In P. Cranston (Ed.), Chironomids - from genes to ecosystems (pp. 247-253). Melbourne, Australia: CSIRO Publications.Google Scholar

  • Grzybkowska, M. & Głowacki, Ł. (2011). Chironomidae (Diptera) diversity in lowland rivers of various orders and of different levels of human impact in central Poland. In X. Wang & W. Liu (Eds.), Proceedings of the 17th International Symposium on Chironomidae - Contemporary chironomid studies (pp. 282-295). Tianjin, China: Nankai University Press.Google Scholar

  • Grzybkowska, M., Kurzawski, M. & Dukowska, M. (2012). Response of Chironomidae (Diptera) to impoundments in small lowland rivers. In T. Ekrem, E. Stur & K. Agaard (Eds.), Proceedings of the 18th International Symposium on Chironomidae - Fauna norvegica 31 (pp. 25-33). Trondheim: NTNU. DOI: 10.5324/fn.v31i0.1379.CrossrefGoogle Scholar

  • Halpern, M., Gasith, A. & Broza, M. (2002). Does the tube of a benthic chironomid larva play a role in protecting its dweller against chemical toxicants? Hydrobiologia 470: 49-55. DOI: 10.1023/A:1015665027535.CrossrefGoogle Scholar

  • Harding, J.S. (2005). Impact of metals and mining on stream communities. In T.A. Moore, A. Black, J.A. Centeno, J.S.Google Scholar

  • Harding & D.A. Trumm (Eds.), Metal contaminants in New Zealand (pp. 343-357). Christchurch: Resolutionz press.Google Scholar

  • Hershey, A.E. & Dodson, S.I. (1987). Predator avoidance by Cricotopus: cyclomorphopsis and the importance of being big and hairy. Ecology 68: 913-920. DOI: 10.2307/1938362.CrossrefGoogle Scholar

  • Janssen, R.P.T., Posthuma, L., Baerselman, R., Den Hollander, H.A., Van Veen, R.P.M. & Peijnenburg, W.J.G.M. (1997). Equilibrium partitioning of heavy metals in dutch field soils. II. Prediction of metal accumulation in earthworms. Environ. Toxicol. Chem. 16: 2479-2488. DOI: 10.1002/ etc.5620161207.CrossrefGoogle Scholar

  • Johnson, R.K., Wiederholm, T. & Rosenberg, D.M. (1993). Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In D.M. Rosenberg & V.H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 40-125). London: Chapman & Hall.Google Scholar

  • Kucuksezgin, F., Uluturhan, H. & Batki, H. (2008). Distribution of heavy metals in water, particulate matter and sediments of Gediz River (Eastern Aegean). Environ. Monit. Assess. 141: 213-225. DOI: 10.1007/s10661-007-9889-6.CrossrefGoogle Scholar

  • Lindegaard, C. (1995). Classification of water-bodies and pollution. In P.D. Armitage, P.S. Cranston & L.C.V. Pinder (Eds.), The Chironomidae. Biology and ecology of non-biting midges (pp. 385-404). London: Chapman & Hall.Google Scholar

  • Lindegaard, C. & Brodersen, K.P. (1995). Distribution of Chironomidae (Diptera) in the river continuum. In P.Google Scholar

  • Cranston (Ed.), Chironomids: from genes to ecosystems (pp. 257-271). Melbourne, Australia: CSIRO Publications.Google Scholar

  • Makino, W., Kato, H., Takamura, N., Mizutani, H., Katano, N. & Mikami, H. (2001). Did chironomid emergence release Daphnia from fish predation and lead to Daphnia-driven clear-water phase in Lake Towada, Japan? Hydrobiologia 442: 309-317. DOI: 10.1023/A:1017532717135.CrossrefGoogle Scholar

  • Martinez, E.A., Moore, B.C., Schaumloffel, J. & Dasgupta, N. (2002). The potential association between menta deformities and trace elements in Chironomidae (Diptera) taken from a heavy metal contaminated river. Arch. Environ. Contam. Toxicol. 42: 286-291. DOI: 10.1007/s00244-001-0190-0.CrossrefGoogle Scholar

  • Mckie, B.G. (2004). Disturbance and investment: developmental responses of tropical lotic midges to repeated tube destruction in the juvenile stages. Ecol. Entomol. 29: 457-466. DOI: 10.1111/j.0307-6946.2004.00622.x.CrossrefGoogle Scholar

  • Minshall, G.W. & Robinson, C.T. (1998). Macroinvertebrate community structure in relation to measures of lotic habitat heterogeneity. Fundam. Appl. Limnol. 141: 129-151.Google Scholar

  • Mousavi, S.K., Primicerio, R. & Amundsen, P. (2003). Diversity and structure of Chironomidae (Diptera) communities along a gradient of heavy metal contamination in a subarctic watercourse. Sci. Total Environ. 307: 93-110. DOI: 10.1016/ S0048-9697(02)00465-5.CrossrefGoogle Scholar

  • Muscatello, J.R. & Liber, K. (2010). Uranium uptake and depuration in aquatic invertebrate Chironomus tentans. Environ. Pollut. 158: 1696-1701. DOI: 10.1016/j. envpol.2009.11.032.CrossrefGoogle Scholar

  • Nogaro, G., Mermillod-Blondin, F., Franc, F., Caillet, O., Gaudet, J.P., Lafont, M. & Gibert, J. (2006). Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshwater Biol. 51: 1458-1473. DOI: 10.1111/j.1365-2427.2006.01577.x.CrossrefGoogle Scholar

  • Olafsson, J.S. & Paterson, D.M. (2004). Alteration of biogenic structure and physical properties by tube-building chironomid larve in cohesive sediments. Aquatic Ecol. 38: 219-229. DOI: 10.1023/B:AECO.0000032050.10546.bb.CrossrefGoogle Scholar

  • Osmulski, P. & Leyko, W. (1986). Structure, function and physiological role of Chironomus hemoglobin. Comp. Biochem. Physiol. B: Comp. Biochem. 85: 701-722. DOI: 10.1016/0305-0491(86)90166-5.CrossrefGoogle Scholar

  • Petersen, R.C., Cummins, K.W. & Ward, G.M. (1989). Microbial and animal processing of detritus in a woodland stream. Ecol. Monograph. 59: 21-39. DOI: 10.2307/2937290.CrossrefGoogle Scholar

  • Poulton, B.C., Monda, D.P., Woodward, D.F., Wildhaber, M.L. & Brumbaugh, W.G. (1995). Relations between benthic community structure and metals concentrations in aquatic macroinvertebrates: Clark Fork River, Montana. J. Fresh. Ecol. 10: 277-293. DOI: 10.1080/02705060.1995.9663447. Quinn, J.M. & Hickey, C.W. (1990). Magnitude of effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in New Zealand rivers. N. Z. J. Mar. Freshwat. Res. 24: 387-409. DOI: 10.1080/00288330.1990.9516433.CrossrefGoogle Scholar

  • Rainbow, P.S. (1996). Heavy metals in aquatic invertebrates. In W.N. Beyer, G.H. Heinz & A.M. Redmon-Norwood (Eds.), Environmental contaminants in wildlife (pp. 405-425). Boca Raton, USA: Lewis Publisher.Google Scholar

  • Schaller, J., Brackhage, C. & Dudel, E.G. (2011). Invertebrates minimize accumulation of metals and metalloids in contaminated environments. Water Air Soil Pollut. 218: 227-233. DOI: 10.1007/s11270-010-0637-0.CrossrefGoogle Scholar

  • Smolders, A.J.P, Lock, R.A.C., Van der Velde, G., Hoyos, R.I.M. & Roelofs, J.G.M. (2003). Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Arch. Environ. Contam. Toxicol. 44: 314-323. DOI: 10.1007/s00244-002-2042-1.CrossrefGoogle Scholar

  • StatSoft Inc. (2011). STATISTICA (data analysis software system), version 10.Google Scholar

  • Szyszlak-Bargłowicz, J., Słowik, T., Zając, G. & Piekarski, W. (2013). The Content of Heavy Metals in the Drainage Ditches by Communication Routes. Annual Set The Environment Protection 15: 2309-2323 [English summary]. Retrieved: March 15, 2015, from http://www.ros.edu.pl/index.php/RO/article/view/182/174.Google Scholar

  • Tang, H., Song, M.Y., Cho, W.S., Park, Y.S. & Chon, T.S. (2010). Species abundance distribution of benthic chironomids and other macroinvertebrates across different levels of pollution in streams. Ann. Limnol.- Int. J. Lim. 46: 53-66. DOI: 10.1051/ limn/2009031.CrossrefGoogle Scholar

  • Tokeshi, M. (1995). Species interactions and community structure. In P.D. Armitage, P.S. Cranston & L.C.V. Pinder (Eds.), The Chironomidae. Biology and ecology of non-biting midges (pp. 297-335). London: Chapman & Hall.Google Scholar

  • Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedel, J.R. & Cushing, C.E. (1980). The river continuum concept. Can. J. Fish. Aquat. Sci. 37: 130-137. DOI: 10.1139/f80-017.CrossrefGoogle Scholar

  • Vedamanikam, V.J. & Shazili, N.A.M. (2009). The chironomid larval tube, a mechanism to protect the organism from environmental disturbances? Toxicol. Environ. Chem. 91(1): 171-176. DOI: 10.1080/02772240802074934.CrossrefGoogle Scholar

  • Walshe, B.M. (1950). The feeding habits of certain chironomid larvae (subfamily Tendipedinae). Proceedings of the Zoological Society of London 121: 63-79. DOI: 10.1111/ j.1096-3642.1951.tb00738.x.CrossrefGoogle Scholar

  • Wiederholm, T. (1984). Responses of aquatic insects to environmental pollution. In D.M. Rosenberg & V.H. Resh (Eds.), The ecology of aquatic insects (pp. 508-557). New York, USA: Praeger.Google Scholar

  • Winberg, G.G. (1978). Experimental application of various systems of biological indication of water pollution. In D.I. Mount (Ed.), Proceeding of first and second USA - USSR symposium on effect of pollutants upon aquatic ecosystems (pp. 14-149). Duluth, USA: Environmental Research Laboratory, US Environmental Protection Agency.Google Scholar

  • Winner, R.W., Boesel, M.V. & Farrell, M.P. (1980). Insect community structure as an index of heavy metal pollution in lotic ecosystems. Can. J. Fish Aquat. Sci. 37: 647-655. DOI: 10.1139/f80-081. CrossrefGoogle Scholar

About the article

Published Online: 2015-12-09

Published in Print: 2015-12-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 4, Pages 445–455, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0042.

Export Citation

Faculty of Oceanography and Geography, University of Gdansk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Luiz Eduardo de Oliveira Gomes, Lucas Barreto Correa, Fabian Sá, Renato Rodrigues Neto, and Angelo Fraga Bernardino
Marine Pollution Bulletin, 2017, Volume 120, Number 1-2, Page 28

Comments (0)

Please log in or register to comment.
Log in