Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 44, Issue 4


A brief look at the free-living Nematoda of the oxic/anoxic interface with a new genus record (Trefusia) for the Black Sea

Derya Ürkmez / Michael L. Brennan / Murat Sezgin / Levent Bat
Published Online: 2015-12-09 | DOI: https://doi.org/10.1515/ohs-2015-0051


In order to provide the first comparative source of nematofaunal data at the oxic/anoxic interface off the Sinop Peninsula, the southern Black Sea, a survey of meiofauna and nematode fauna was conducted in August 2011 aboard the exploration vessel (E/V) Nautilus with ROV during the Black Sea Expedition NA012. Higher meiofaunal taxa and nematode composition were investigated. Free-living marine nematodes were the most abundant group at each site. A total of 84 species were found, belonging to 23 families. The suboxic zone was dominated by the nematode Trefusia aff. longicauda (42%). This is the first record of the genus Trefusia De Man, 1893 for the Black Sea. Although many factors are likely to influence the changes in the meiofaunal abundance and the composition of nematode assemblages, we suggest that oxygen reduction indeed affected the meiofaunal abundance and the nematode composition, however, a particular preference of several taxa for extreme conditions may be suggested.

Keywords: meiofauna; Nematoda; suboxic; Trefusia; Turkey


  • Balsamo M., Albertelli G., Ceccherelli V.U., Coccioni R., Colangelo M.A., Curini-Galletti M., Danovaro R., D’Addabbo R., Leonardis C., Fabiano M., Frontalini F., Gallo M., Gambi C., Guidi L., Moreno M., Pusceddu A., Sandulli R., Semprucci F., Todaro M.A., Tongiorgi P. (2010). Meiofauna of the Adriatic Sea: current state of knowledge and future perspectives. Chemistry and Ecology, 26: 1, 45-63.CrossrefWeb of ScienceGoogle Scholar

  • Bouwman, L.A., Romeyn K., Kremer D.R. & Es F.B. (1984). Occurrence and feeding biology of some nematode species in aufwuchs communities. Cahiers de Biologie Marine 25: 287-303.Google Scholar

  • Braeckman, U., Vanaverbeke J., Vincx M., van Oevelen D. & Soetaert K. (2013). Meiofauna metabolism in suboxic sediments: currently overestimated. PLOS One 8(3): e59289. DOI: 10.1371/journal.pone.0059289.Web of ScienceCrossrefGoogle Scholar

  • Brennan, M.L., Davis D., Roman C., Buynevich I., Catsambis A. et al. (2013). Ocean dynamics and anthropogenic impacts along the southern Black Sea shelf examined through the preservation of pre-modern shipwrecks. Continental Shelf Research 53: 89-101. DOI: 10.1016/j.csr.2012.12.010.Web of ScienceCrossrefGoogle Scholar

  • Cook, A.A., Lambshead P.J., Hawkins L.E., Mitchell N., Levin L.A. (2000). Nematode abundance at the Oxygen Minimum Zone in the Arabian Sea. Deep-Sea Research II 47:75-85. DOI: 10.1016/s0967-0645(99)00097-1.CrossrefGoogle Scholar

  • Çınar, M.E. (2014). Checklist of the phyla Platyhelminthes, Xenacoelomorpha, Nematoda, Acanthocephala, Myxozoa, Tardigrada, Cephalorhyncha, Nemertea, Echiura, Brachiopoda, Phoronida, Chaetognatha, and Chordata (Tunicata, Cephalochordata, and Hemichordata) from the coasts of Turkey. Turkish Journal of Zoology 38: 698-722. DOI: 10.3906/zoo-1405-70.Web of ScienceCrossrefGoogle Scholar

  • Duman, M., Duman S., Lyons T.W., Avci M., Izdar E., Demirkurt E. (2006). Geochemistry and sedimentology of shelf and upper slope sediments of the south-central Black Sea. Marine Geology 227:51-65. DOI: 10.1016/j. margeo.2005.11.009.CrossrefGoogle Scholar

  • Frontalini F., Semprucci F., Coccioni R., Balsamo M., Bittoni P., Covazzi-Harriague A. (2011). On the quantitative distribution and community structure of the meio and macrofaunal communities in the coastal area of the Central Adriatic Sea (Italy). Environmental Monitoring and Assessment, 180:325-344. DOI: 10.1007/s10661-010-1791-y.CrossrefGoogle Scholar

  • Gooday, A.J., Bernhard J.M., Levin L.A. & Suhr S. (2000). Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen deficient settings: taxonomic composition, diversity and relation to metazoan faunas. Deep-Sea Research II 47:25-54. DOI: 10.1016/s0967-0645(99)00099-5.CrossrefGoogle Scholar

  • Gooday, A.J., Bett B.J., Ecobar E., Ingole B. & Levin L.A. (2010). Habitat heterogeneity and its influence on benthic biodiversity in oxygen minimum zones. Marine Ecology An Evolutionary Perspective, Blackwell Verlag GmbH, 31:125-147. DOI: 10.1111/j.1439-0485.2009.00348.x.CrossrefGoogle Scholar

  • Giere, O. (2009). Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments.2nd ed. Berlin, Heidelberg, Springer- Verlag. DOI: 10.1007/b106489.CrossrefGoogle Scholar

  • Hulings, N. & Gray J.A. (1971). Manual for the study of meiofauna. Smithsonian Contributions to Zoology.CrossrefGoogle Scholar

  • Leduc, D. (2013). Two new free-living nematode species (Trefusiina: Trefusiidae) from the Chatham Rise crest, Southwest Pacific Ocean. European Journal of Taxonomy 55:1-13. DOI: 10.5852/ejt.2013.55.CrossrefGoogle Scholar

  • Levin, L.A., Huggett C.L. & Wishner K.F. (1991). Control of deep-sea benthic community structure by oxygen and organic-matter gradients in the eastern Pacific Ocean. Journal of Marine Research 49:763-800. DOI: 10.1357/002224091784995756.CrossrefGoogle Scholar

  • Levin, L.A., Gage J.D., Martin C. & Lamont P.A. (2000). Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Research II 47: 189-226. DOI: 10.1016/S0967-0645(99)00103-4.CrossrefGoogle Scholar

  • Levin, L.A., James D.W., Martin C.M., Rathburn A., Harris L., Michener R. (2001). Do methane seeps support distinct infaunal assemblages? Observations on community structure and nutrition from the northern California slope and shelf. Marine Ecology Progress Series. 208: 21-39.Google Scholar

  • Levin, L.A. (2003). Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology 41:1-45.Google Scholar

  • Kiseleva, M.I. (1963). On the fauna of Polychaeta in the Black Sea. Trudy Sevastopolskoy Biologicheskoy Stanstsii 15:75-89 (In Russian).Google Scholar

  • Luth, U. & Luth C. (1998). Benthic meiofauna and macrofauna of a methane seep area South-west of the Crimean Peninsula, Black Sea. In Luth U., Luth C. & Thiel H. (Eds.), MEGA-SEEPS- Methane Gas Seeps Exploration in the Black Sea (pp. 59-77). Berichte aus dem Zentrum fuer Meeres und Klimatoforsch, Hamburg.Google Scholar

  • Mare, M.F. (1942). A study of a marine benthic community with special reference to the microorganisms. Journal of Marine Biology Association of the United Kingdom 25:517-554.Google Scholar

  • Middleburg, J.J. & Levin L.A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6: 1273-1293.Web of ScienceCrossrefGoogle Scholar

  • Miljutin, D.M., Gad G., Miljutina M.M., Mokievsky V.O, Fonseca-Genevois V. et al. (2010). The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 40:143-159. DOI: 10.1007/s12526-010-0041-4.CrossrefGoogle Scholar

  • Murray, J.W., Jannasch H.W., Honjo S., Anderson R.F., Reeburgh W.S. et al. (1989). Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338: 411-413. DOI:10.1038/338411a0.CrossrefGoogle Scholar

  • Neira, C., Sellanes J., Levin L.A. & Arntz W.E. (2001). Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep Sea Research I 48:2453-2472. DOI: 10.1016/s0967-0637(01)00018-8.CrossrefGoogle Scholar

  • Neira, C., King I., Mendoza G., Sellanes J., De Ley P. et al. (2013). Nematode Community Structure along a central Chile margin transect influenced by the oxygen minimum zone. Deep Sea Research I 78:1-15. DOI:10.1016/j.dsr.2013.04.002.CrossrefGoogle Scholar

  • Nicholas, W.L. & Hodda M. (1999). The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia 394:113-127. DOI: 10.1023/A:1003544115600.CrossrefGoogle Scholar

  • Oguz, T., Murray J.W. & Callahan A.E. (2001). Modeling redox cycling across the suboxic-anoxic interface zone in the Black Sea. Deep Sea Research I 48:761-787.CrossrefGoogle Scholar

  • Platt, H.M. & Warwick R.M. (1983). Freeliving marine nematodes. Pt.1. British Enoplids. Pictorial key to world genera and notes for the identification of British species. Cambridge: Cambridge University Press.Google Scholar

  • Platt, H.M. & Warwick, R.M. (1988). Freeliving marine nematodes. Pt.2. British Chromadorids. Pictorial key to world genera and notes for the identification of British species. Leiden: Brill/Backhuys.Google Scholar

  • Revkov, N.K. & Sergeeva, N.G. (2004). Current state of zoobenthos at the Crimean shores of the Black Sea. In: Öztürk B., Mokievsky V.O., Topaloğlu B. (Eds) International Workshop of the Black Sea Benthos, 18-23 April, İstanbul, Turkey: 189-217.Google Scholar

  • Sandulli R., Semprucci F., Balsamo M. (2014). Trends of taxonomic and functional biodiversity of freeliving nematodes from a Blue Hole (Maldives, Indian Ocean). Italian Journal of Zoology, 81: 508-516. DOI: 10.1080/11250003.2014.952356.CrossrefGoogle Scholar

  • Semprucci F., Frontalini F., Covazzi-Harriague A., Coccioni R., Balsamo M. (2013). Meio- and Macrofauna in the marine area of the Monte St. Bartolo Natural Park (Central Adriatic Sea, Italy). Scientia Marina, 77(1): 189-199.CrossrefWeb of ScienceGoogle Scholar

  • Semprucci F., Balsamo M., Frontalini F. (2014). The nematode assemblage of a coastal lagoon (Lake Varano, Southern Italy): ecology and biodiversity patterns. Scientia Marina, 78: 579-588. DOI: 10.1080/02757541003705492.Web of ScienceCrossrefGoogle Scholar

  • Sergeeva, N.G. (2003). Meiobenthos in the region with the methane gas seeps. In: Eremeev VN, Gaevskaya AV. (Eds.), Present Time Conditions of Biological Diversity in the Nearshore Zone of Crimea Peninsula (the Black Sea sector). Ecosi-Gidrophizika, Sevastopol: 258-267 (In Russian).Google Scholar

  • Sergeeva, N.G. & Gulin, M.B. (2007). Meiobenthos from an active methane seepage area in the NW Black Sea. Marine Ecology Progress Series, 28:152-159. DOI: 10.1111/j.1439-0485.2006.00143.x.Web of ScienceCrossrefGoogle Scholar

  • Sergeeva, N.G., Gooday, A.J. & Mazlumyan, S.A. (2012). Meiobenthos of oxic/anoxic interface in the south-western region of the Black Sea: abundance and taxonomic composition-In: A.V. Valtenbach et al. (Eds.): Anoxia: Evidence for eukaryote survival and paleontological strategies, cellular origin, life in extreme habitats and astrobiology, 21:369-402. DOI: 10.1007/978-94-007-1896-8_20.CrossrefGoogle Scholar

  • Sergeeva, N.G., Mazlumyan, S.A., Çağatay. N. & Lichtschlag, A. (2013). Hypoxic Meiobenthic Communities of the Istanbul Straits’s (Bosporus) Outlet Area of the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences 13:33-41. doi:10.4194/1303-2712-v13_1_05.CrossrefWeb of ScienceGoogle Scholar

  • Sergeeva, N.G. & Zaika, V. (2013). The Black Sea Meiobenthos in Permanently Hypoxic Habitat. Acta Zoologica Bulgarica 65 (2):139-150.Google Scholar

  • Somerfield, P.J., Warwick, R.M. & Moens, T. (2005). Meiofauna techniques. In: Eleftheriou A., McIntyre A. (Eds). Methods for the study of marine benthos. Oxford: Blackwell.Google Scholar

  • Ürkmez, D., Sergeeva N.G., Sezgin M. (2011). Seasonal changes of nematodes from Sinop coasts of the Black Sea. Sixth International Conference “Environmental Micropaleontology, Microbiology and Meiobenthology”, EMMM-2011, 279-282.Google Scholar

  • Ürkmez, D. & Brennan M.L. (2013). A new species of Halaphanolaimus (Nematoda: Leptolaimidae) from the southern Black Sea (Turkey) with a modified key for species identification. Zootaxa 3691 (2): 220-228. http://dx.doi.org/10.11646/zootaxa.3691.2.2.0.CrossrefWeb of ScienceGoogle Scholar

  • Vanaverbeke, J., Bezerra T.N., Braeckman U., De Groote A., De Meester N. et al. (2015). NeMys: World Database of Free- Living Marine Nematodes. Accessed at http://nemys.ugent.beon2015-02-01.Google Scholar

  • Van Gaever, S., Vanreusel A., Hughes J.A., Bett B. & Kirikoualis K. (2004). The macro- and micro-scale patchiness of meiobenthos associated with the Darwin Mounds (northeast Atlantic). Journal of the Marine Biological Association of the United Kingdom 84:547-556. http://dx.doi.org/10.1017/S0025315404009555h CrossrefGoogle Scholar

  • Vincx, M. (2015, March). Trefusia longicauda de Man, 1893. In: Vanaverbeke J, Bezerra TN, Braeckman U, De Groote A, De Meester N, Deprez T, Derycke S, Gilarte P, Guilini K, Hauquier F, Lins L, Maria T, Moens T, Pape E, Smol N, Taheri M, Van Campenhout J, Vanreusel A, Wu X, Vincx M (2015). NeMys: World Database of Free-Living Marine Nematodes. Accessed through: Vanaverbeke J, Bezerra TN, Braeckman U, De Groote A, De Meester N, Deprez T, Derycke S, Gilarte P, Guilini K, Hauquier F, Lins L, Maria T, Moens T, Pape E, Smol N, Taheri M, Van Campenhout J, Vanreusel A, Wu X, Vincx M (2015). NeMys: World Database of Free-Living Marine Nematodes. Retrieved 2015-03-31, from http://nemys.ugent.be/aphia.php?p=taxdetails&id=122268.Google Scholar

  • Vorobyeva, L.V. (2003). Meiobenthos of the Black Sea (Essay of the History of Its Study). Hydrobiological Journal. Vol. 39, No. 2. DOI: 10.1615/HydrobJ.v39.i2.120.CrossrefGoogle Scholar

  • Wells, J.B.J. (1988). Copepoda. In: Higgins, R. P. and H. Thiel. (Eds.). Introduction to the Study of Meiofauna. Washington, D.C.: Smithsonian Institution Press.Google Scholar

  • Wetzel, M.A., Fleeger J.W. & Powers S.P. (2001). Effects of hypoxia and anoxia on meiofauna: A review with new data from the Gulf of New Mexico, Coastal and Estaurine Studies, Coastal Hypoxia: Consequences for living resources and ecosystems, edited by: Turner, N.N.R.A.R.E., AGU, Washington, DC.: American Geophysical Union. DOI: 10.1029/CE058p0165. CrossrefGoogle Scholar

About the article

Received: 2015-04-21

Accepted: 2015-06-08

Published Online: 2015-12-09

Published in Print: 2015-12-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 4, Pages 539–551, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0051.

Export Citation

Faculty of Oceanography and Geography, University of Gdansk, Poland.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kapuli Gani Mohamed Thameemul Ansari, Ajit Kumar Pattnaik, Gurdeep Rastogi, and Punyasloke Bhadury
Wetlands Ecology and Management, 2017

Comments (0)

Please log in or register to comment.
Log in