Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 44, Issue 4


Application of XBeach to model a storm response on a sandy spit at the southern Baltic

Natalia Bugajny
  • Corresponding author
  • Institute of Marine and Coastal Sciences, University of Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kazimierz Furmańczyk
  • Institute of Marine and Coastal Sciences, University of Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Dudzińska-Nowak
  • Institute of Marine and Coastal Sciences, University of Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-09 | DOI: https://doi.org/10.1515/ohs-2015-0052


The process-based XBeach model has been used to simulate changes in beach and dune morphology in terms of influence of the significant storm event on the sandy Dziwnow Spit, located in the western part of the Polish coast. The research was carried out as part of the SatBałtyk project and represents the first stage of XBeach model application to create a system for recording the selected effects and hazards caused by current and expected storm events. The significant storm event, registered in 2009, was used for model calibration. Ten cross-shore profiles were selected and compared against preand post-storm morphological data. Model performance was verified on the basis of BSS values for the terrestrial part of the profiles. Verification of the results was performed using two different approaches: on the basis of the highest mean BSS value for all profiles together and for one set of parameters (approach no. 1) and on the basis of the highest BSS value for each profile and most adequate sets of parameters (approach no. 2). Additionally, the observed and modelled beach and dune volume changes were calculated. The research showed that the XBeach model is well capable of simulating the dune and beach erosion caused by the storm event, but the model requires site-specific calibration. High sensitivity of the XBeach model to the facua parameter was determined; the parameter defines the wave shape and affects the sediment transport. The best fit of the profiles was obtained for BSS, ranging between 0.71 and 0.93, with the parameter hmin = 0.01 or 0.05, facua = 0.2-0.5, wetslp = 0.2-0.4 and dryslp = 1 or 1.5. The volume estimation error ranged from + 0.6 m3 m-1 to -7.7 m3 m-1, which represents 2.7% to 31.6%.

Keywords: beach and dune erosion; XBeach; numerical modelling; storm response; volume changes


  • Bolle, A., Mercelis, P. & Roelvink, D. & Haerens, P. & Trouw, K. (2011). Application and validation of XBeach for three different field sites. Coastal Engineering 32: 1811-1823. DOI:10.9753/icce.v32.sediment.40.CrossrefGoogle Scholar

  • Bugajny, N., Furmańczyk, K. & Dudzińska-Nowak, J. & Paplińska-Swerpel, B. (2013). Modelling morphological changes of beach and dune induced by storm on the Southern Baltic coast using XBeach (case study: Dziwnow Spit). Journal of Coastal Research 65: 672-677. DOI: 10.2112/ SI65-114.1.CrossrefGoogle Scholar

  • Cieślikiewicz, W. & Paplińska-Swerpel, B. (2008). A 44- year hindcast of wind wave fields over the Baltic Sea. Coastal Engineering 55(11): 894-905. DOI:10.1016/j. coastaleng.2008.02.017.Web of ScienceCrossrefGoogle Scholar

  • Dobracki, R. & Zachowicz, J. (2005). Mapa Geodynamiczna Polskiej Strefy Brzegowej Bałtyku. Szczecin: Państwowy Instytut Geologiczny Oddział Pomorski, skala 1:10 000, 2 arkusze, (in Polish).Google Scholar

  • Dubrawski, R. (Eds.) (2008). Elementy monitoringu morfodynamicznego polskich brzegów morskich. Gdańsk: Zakład Wydawnictw Naukowych Instytutu Morskiego w Gdańsku (in Polish).Google Scholar

  • Dudzińska-Nowak, J. (2006). Coastline long-term changes of the selected area of the Pomeranian Bay. In A. Tubielewicz (Eds.), Coastal Dynamic, Geomorphology and Protection, (pp. 163-170). Gdańsk: Gdańsk University of Technology.Google Scholar

  • Dudzińska-Nowak, J. (2015). Metody ochrony zachodniego wybrzeża Polski i ich wpływ na zmiany brzegu w latach 1938-2011. Szczecin: Wydawnictwo Uniwersytetu Szczecińskiego. (in Polish with Engl. summ.).Google Scholar

  • Furmańczyk, K. & Dudzińska-Nowak, J. (2009). Effects of extreme storms on coastline changes: a southern Baltic example. Journal of Coastal Research 56: 1637-1640.Google Scholar

  • Furmańczyk, K. K., Dudzińska-Nowak, J. & Furmańczyk, K. A. & Paplińska-Swerpel, B. & Brzezowska, N. (2012). Critical storm thresholds for the generation of significant dune erosion at Dziwnow Spit. Geomorphology 143-144: 62-68. DOI:10.1016/j.geomorph.2011.09.007.Web of ScienceCrossrefGoogle Scholar

  • Harley, M., Armaroli, C. & Ciavola, P. (2011). Evaluation of XBeach predictions for a real-time warning system in Emilia-Romagna, Northern Italy. Journal of Coastal Research 64: 1861-1865.Google Scholar

  • Kriebel, D.L. & Dean, R.G. (1985). Numerical simulation of time-dependent beach and dune erosion. Coastal Engineering 9: 221-245.CrossrefGoogle Scholar

  • Larson, M & Kraus, N. (1989). SBEACH: Numerical Model for Simulating Storm-induced Beach Change, Report 1, Empirical Foundation and Model Development. Vicksburg, Mississippi: Coastal Engineering Research Center. (TR CERC-89-9).Google Scholar

  • Paplińska, B. (2001). Specific features of sea waves in the Pomeranian Bay. Archives of Hydro-Engineering and Environmental Mechanics 48(2): 55-72.Google Scholar

  • Pender, A. & Karunarathna, H. (2013). A statisticalprocess based approach for modelling beach profile variability. Coastal Engineering 81: 19-29. DOI:10.1016/j. coastaleng.2013.06.006.CrossrefWeb of ScienceGoogle Scholar

  • Racinowski, R. & Seul, C. (1999). Brzeg i podbrzeże Mierzei Dziwnowskiej. In R.K. Borowka, Z. Młynarczyk & A. Wojciechowski (Eds.), Ewolucja geosystemów nadmorskich południowego Bałtyku (pp. 115-120). Poznań-Szczecin: Bogucki Wydawnictwo Naukowe (in Polish).Google Scholar

  • Roelvink, D., Reniers, A. & van Dongeren, A. & van Thiel de Vries, J. & McCall, R. & Lescinski, J. (2009). Modelling storm impacts on beaches, dune and barrier islands. Coastal Engineering 56(11-12): 1133-1152. DOI:10.1016/j. coastaleng.2009.08.006.CrossrefWeb of ScienceGoogle Scholar

  • Roelvink, D., Reniers, A. & van Dongeren, A. & van Thiel de Vries, J. & Lescinski, J. & McCall, R. (2010). XBeach Model Description and Manual. Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology. (1200116/1002266).Google Scholar

  • Ruiz de Alegria-Arzaburu, A., Williams, J.J. & Masselink, G. (2011). Application of XBeach to model storm response on a macrotidal gravel barrier. Coastal Engineering 32: 1796-1810. DOI:10.9753/icce.v32.sediment.39.CrossrefGoogle Scholar

  • Sallenger, A.H., Jr. (2000). Storm impact scale for barrier islands. Journal of Coastal Research 16(3): 890-895.Google Scholar

  • Steetzel, H.J. (1993). Cross-shore transport during storm surges. Zwolle. CASPARIE.Google Scholar

  • Splinter, K. & Palmsten, M. L. (2012). Modeling dune response to an East Coast Low. Marine Geology 329-332: 46-57. DOI:10.1016/j.margeo.2012.09.005.Web of ScienceCrossrefGoogle Scholar

  • van Rijn, L.C., Walastra, D.J.R. & Grasmeijer, B. & Sutherland, J. & Pan, S. & Sierra, J.P. (2003). The predictability of crossshore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering 37(3): 295-327. DOI:10.1016/S0378-3839(02)00120-5.CrossrefGoogle Scholar

  • van Thiel de Vries, J.S.M. (2009). Dune erosion during storm surges. The Netherlands: IOS Press. Google Scholar

  • Vousdoukas, M.I., Almeida, L.P. & Ferreira, O. (2011). Modelling storm-induced beach morphological change in a meso-tidal reflective beach using XBeach. Journal of Coastal Research 64: 1916-1920.Google Scholar

  • WAMDI Group. (1988). The WAM model-a third generation ocean wave prediction model. Journal of Physical Oceanography 18: 1775-1810.Google Scholar

  • Woźniak, B., Bradtke, K. & Darecki, M. & Dera, J. & Dudzińska-Nowak, J. & Dzierzbicka-Głowacka, L. & Ficek, D. & Furmańczyk, K. & Kowalewski, M. & Krężel, A. & Majchrowski, R. & Ostrowska, M. & Paszkuta, M. & Stoń-Egiert, J. & Stramska, M. & Zapadka, T. (2011). SatBałtyk - A Baltic environmental satellite remote sensing system - an ongoing project in Poland. Part 2: Practical applicability and preliminary results. Oceanologia 53(4): 1-34. DOI:10.5697/oc.53-3.691. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-04-30

Accepted: 2015-05-28

Published Online: 2015-12-09

Published in Print: 2015-12-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 44, Issue 4, Pages 552–562, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2015-0052.

Export Citation

Faculty of Oceanography and Geography, University of Gdansk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in