Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 45, Issue 2


Baltic Sea datums and their unification as a basis for coastal and seabed studies

Tomasz Wolski
  • Corresponding author
  • Institute of Marine and Coastal Sciences, University of Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernard Wiśniewski
  • Institute of Marine Navigation, Maritime University of Szczecin, ul. Wały Chrobrego 1-2, 70-500 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stanisław Musielak
  • Institute of Marine and Coastal Sciences, University of Szczecin, ul. Mickiewicza 18, 70-383 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-22 | DOI: https://doi.org/10.1515/ohs-2016-0022


This paper presents examples of application of a common reference datum, such as NAP, within the elevation EVRS reference system for the Baltic Sea. A common reference datum allowed for setting the geographical pattern of occurrence of extreme sea levels in the Baltic Sea. The eastern Baltic coasts exposed to western air masses are vulnerable to extreme hydrological events (the Gulf of Finland, the Gulf of Riga and the Gulf of Bothnia). On the contrary, the Swedish coasts of the central and northern Baltic are the least threatened by extreme sea levels. The south-western coasts of the Baltic Sea (the Bay of Mecklenburg and the Bay of Kiel) cover the basins with the most frequent and the most severe storm falls and extremely low sea levels. Demonstration of the Baltic surface deformation magnitude during a storm event is another example of NAP application. The instantaneous height difference between the north-eastern and southwestern coasts was 356 cm, which resulted from the negative impact of pressure (water cushion) induced by a dynamic and deep low-pressure system moving through the Baltic Sea. The common reference datum allowed for visualization of the so-called “theoretical water” distribution which has a wide application in the hydraulic engineering within the coastal zone. In addition, the study provides examples of differences that may be observed during storm events between the real sea-level data and the hydrodynamic model forecast. This is of great practical significance in terms of forecasting storm surges in the Baltic Sea.

Key words: sea level; storm surge; Baltic Sea; vertical datum; Normaal Amsterdams Peil (NAP)


  • Averkiev, A.S., Klevanny, K.A. (2007). Determining cyclone trajectories and velocities leading to extreme sea level rises in the Gulf of Finland. Russian Meteorology and Hydrology 32: 514-519. .CrossrefGoogle Scholar

  • Averkiev, A.S., Klevanny, K.A. (2010). Case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland. Continental Shelf Research 30(6): 707-714, DOI:10.1016/j.csr.2009.10.010.Google Scholar

  • Badura, H. Zawadzki, J., Fabijanczyk, P. (2012). Block kriging and GIS methods in geostatistical modeling of methane gas content in coal mines. Roczniki Geomatyki 10, 3(53): 17-26 (in Polish with English summary).Google Scholar

  • Baltic Sea Hydrographic Commission. (2013). CDWG Report to the BSHC. In 18th Conference, 16-18 September 2013 (pp. 1-11) Tallinn, Estonia.Google Scholar

  • Baltic Sea Hydrographic Commission. (2014). CDWG Report to the BSHC. In 19th Conference, 11-12 June 2014, (pp. 3, 5), Riga, Latvia.Google Scholar

  • Bogdanov, V.I., Medvedev, M.Y., Taybatorov, K.A. (1994). On the persistence of the oceanic background of apparent sea level changes in the Baltic Sea. Rep. Finnish Geod. Instit. 94: 5.Google Scholar

  • Ekman, M. (1999) Using Mean Sea Surface Topography for Determination of Height System Differences across the Baltic Sea. Marine Geodesy 22: 31-35. .CrossrefGoogle Scholar

  • Ekman, M., Mäkinen, J. (1996). Mean sea surface topography in the Baltic Sea and its transition area to the North Sea: A geodetic solution and comparisons with oceanographic models. Journal of Geophysical Research: Oceans (1978–2012) 101(C5): 11993-11999. .CrossrefGoogle Scholar

  • FMI. (2013). Theoretical mean sea level and geodetical leveling systems in Finland. Finnish Meteorological Institute, Retrieved: Oktober 2013, from http://en.ilmatieteenlaitos.fi/theoretical-mean-sea-level

  • Funkquist, L. Kleine, E. (2007). HIROMB. An introduction to HIROMB, an operational baroclinic model forthe Baltic Sea. In: Report Oceanography 37: 43.Google Scholar

  • Geodatastyrelsen. (2014). Nationale referencesystemer i Danmark og Grønland. Retrieved: September 2015, from http://gst.dk/hvad-er-geodata/data-om-land-danmark faeroeerne-og-groenland/referencenet-og-geodaesi/nationale-referencenet-i-danmark-og-groenland/ (In Danish).

  • Gräwe, U., Burchard H. (2012). Storm surges in the Western Baltic Sea: the present and a possible future. Climate Dynamics 39: 165-183, .CrossrefGoogle Scholar

  • Gumbell, E.J. (1958). Statistics of Extremes. Columbia University Press, (pp. 375).Google Scholar

  • Hammarklint, T. (2009). Swedish Sea Level Series - A Climate Indicator. In Swedish Meteorological and Hydrological Institute (SMHI) 1-5.Google Scholar

  • Ihde, J. (2004). Status of the European Vertical Reference System (EVRS). In Vortrag am EVRS Workshop in Frankfurt am Main vom 5-7 April 2004 5(7) : 1-32.Google Scholar

  • Ihde, J., Augath, W. (2001). An Vertical Reference System for Europe. In EUREF Symposium, June 22-24, 2000, (pp. 99-110). Tromsö, Veröffentlichung der Bayerischen Kommission für die Internationale Erdmessung. München, 61: 99-110.Google Scholar

  • Ihde, J., Augath, W. (2002). The European vertical reference system (EVRS), its relation to a world height system and to the ITRS. Vistas for geodesy in the new millennium. Springer Berlin Heidelberg 78-83. .CrossrefGoogle Scholar

  • Jakobsen, R. (2008). DNN og andre kotesystemer, Retrieved: Oktober 2013, from http://www.slideboom.com/presentations/37439/DNN-og-andre-kotesystemer (In Danish).

  • Jednoral, T., Sztobryn, M., Milkowska, M. (2008). Application of positional statistics model for prediction of extreme levels of Baltic Sea along Polish coastal zone. Inzynieria Morska i Geotechnika 5: 257-263 (In Polish with English summary).Google Scholar

  • Johansson, M, Boman, H, Kahma, K, Launiainen, J. (2001). Trends in sea level variability in the Baltic Sea. Boreal Env Res 6: 159-179, ISSN: 1239-6019559.Google Scholar

  • Kaczmarek, Z.(1970). Statistical methods in hydrology and meteorology Wyd. Komunikacji i Łącznosci, Warszawa, pp. 270 (In Polish with English summary).Google Scholar

  • Koppe, B. (2002). Flood Management at the German Baltic Sea coast. Dissertation. Rostocker Berichte aus dem Fachbereich Bauingenieurwesen, Heft 8, Universität Rostock, pp. 203 (In German).Google Scholar

  • Kowalewska-Kalkowska, H. Kowalewski, M. (2005). Operational hydrodynamic model for forecasting of extreme Hydrological events in the Oder Estuary. Nordic Hydrology 36(4): 411-422, ISSN: 0029-1277.Google Scholar

  • Kowalewska-Kalkowska, H., Kowalewski, M. (2007). Modeling water exchange in the Oder River mouth area. Oceanological and Hydrobiological Studies 36(1): 55-67. .CrossrefGoogle Scholar

  • Krynski, J., Zanimonskiy, Y.M. (2004). Tide Gauge Records-Derived Variations of Baltic Sea Level in Terms of Geodynamics. Geodesy and Cartography 53(2): 85-98.Google Scholar

  • Lisowski, K. (1961). Aperiodic fluctuations of the level of Baltic under anemobaric factors. Archiwum Hydrotechniki 8(1): 17-42 (In Polish with English summary).Google Scholar

  • Łyszkowicz, A. (2001). Levelling Union. European Vertical Reference System. Geodeta: magazyn geoinformacyjny 12(79): 20-24 (In Polish).Google Scholar

  • McGrath, D., Zhang, Ch., Carton, O.T. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution 127: 239-248. .CrossrefGoogle Scholar

  • Meier, M. (2006). Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Climate Dynamics 27(1): 39-68. .CrossrefGoogle Scholar

  • Mononen, J. (2008). Harmonization of Vertical References within the Baltic Sea, In TS 4F – Hydrographic Information Management, Integrating Generations, FIG Working Week, 14-19 June, (pp. 1-8), Stockholm, Sweden.Google Scholar

  • Musielak, S. (2006). Genesis and functioning of the natural system of marine coastal zone. K. Furmanczyk (Eds.), ZZOP w Polsce – stan obecny i perspektywy Brzeg morski zrównowazony, vol. 2. University of Szczecin, Szczecin (In Polish).Google Scholar

  • NOAA, National Climatic Data Center (NCDC), Retrieved: October 2013, from http://www.ncdc.noaa.gov/cdo-web/

  • Olsson, P.A., Eriksson, P.A. (2005). Nationella höjdsystem – historik, Lantmäteriet, 1-5.Google Scholar

  • Project IMGW KLIMAT. (2013). The impact of climate change on changes in mean sea level and the presence of its extreme values in the area of the Polish Baltic coast and scenarios change. In: Wplyw zmian klimatu na srodowisko, gospodarkę i społeczenstwo. Zadanie 6. Baltyk jako element systemu klimatycznego i jego rola w tworzeniu się stanów zagrozenia (In Polish).Google Scholar

  • SHMI, Ocean Web. (2014), Retrieved: Oktober 2014, from http://www.smhi.se/oceanweb/help-info/models-1.33327

  • Stigge, H.J. (1989). Nullpunktkorrektur für alle DDR-Küstenpegel. Mitteilung der Wasserwirtschaftsdirektion Küste. Beiträge zur Meereskunde 60: 53-59. (In German).Google Scholar

  • Suursaar, Ü, Kullas, T., Kuusik, T. (2007). Possible changes in hydrodynamic regime in the Estonian coastal waters (the Baltic Sea) as a result of changes in wind climate. Journal of Coastal Research (Proceedings Australia) SI 50: 247-252.Google Scholar

  • Suursaar, Ü. Kullas, T., Szava-Kovats, R. (2009).Wind and wave storms, storm surges and sea level rise along the Estonian coast of the Baltic Sea.. WIT Transactions on Ecology and the Environment 127: 149-160. .CrossrefGoogle Scholar

  • Suursaar, Ü., Kullas, T., Otsmann, M. (2002). A model study of the sea level variations in the Gulf of Riga and the Väinameri Sea. Continental Shelf Research 22(14): 2001–2019. .CrossrefGoogle Scholar

  • Suursaar, Ü., Kullas, T., Otsmann, M., Kõuts, T. (2003). Extreme sea level events in the coastal waters of western Estonia. Journal of Sea Research 49(4): 295-303. .CrossrefGoogle Scholar

  • Suursaar, Ü., Sooäär J. (2007). Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus, 59A: 249-260. .CrossrefGoogle Scholar

  • Svensson, R., Ågren, J., Olsson, P.A., Eriksson, P.O., Lilje, M. (2006). The New Swedish Height System RH 2000 and Geoid Model SWEN 05LR. In Shaping the Change XXIII FIG Congress, October 8-13, 1-16, Munich, Germany. Synoptic Bulletin PIHM (1950–1979), Warszawa.Google Scholar

  • Sztobryn, M., Stigge, H.J., Wielbinska, D., Weidig, B., Stanislawczyk, I. et al. (2005). Storm surges in the Southern Baltic Sea (in Polish with English summary), Warszawa, Instytut Meteorologii i Gospodarki Wodnej, pp. 76.Google Scholar

  • Sztobryn, M., Weidig, B., Stanislawczyk, I., Holfort, J., Kowalska, B. et al. (2009). Negative Surges in the Southern Baltic Sea (Western and Central Parts), Report No. 45, Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, Hamburg and Rostock, 71 pp., ISSN-Nr. 0946-6010.Google Scholar

  • Urbanski, J. (2012). GIS in the natural study. Wydawnictwo Uniwersytetu Gdanskiego, e-book, 266. (In Polish with English summary).Google Scholar

  • Weisse, R., von Storch, H. (2010). Marine Climate and Climate Change: Storms, Wind, Waves, and Storm Surges. Springer Praxis Books, 219.Google Scholar

  • Wisniewski, B., Wolski, T. (2009a). Catalogues of sea level storm surges and falls and extreme water levels on the Polish coast. Wyd. Akademia Morska, Szczecin, pp. 158 (In Polish with English summary).Google Scholar

  • Wisniewski, B., Wolski T. (2009b). Occurrence probability of maximum sea levels in Polish ports of Baltic Sea coast. Polish Maritime Research 3(16): 62-69.Google Scholar

  • Wisniewski, B., Wolski, T. (2011a). Physical aspects of extreme storm surges and falls on the Polish coast. Oceanologia 53: 373-390. .CrossrefGoogle Scholar

  • Wolski T. (2011-2014). Extreme sea levels at the Baltic Sea coasts. Scientific project no. 2011/01/B/ST10/06470 funded by the National Science Centre.Google Scholar

  • Wolski, T., Wisniewski, B. (2014). Long-term, seasonal and short-term fluctuations in the water level of the Southern Baltic Sea. Quaestiones Geographicae 33(3): 181-197. .CrossrefGoogle Scholar

  • Wolski, T., Wisniewski, B., Giza, A. Kowalewska-Kalkowska, H, Boman, H. et al. (2014). Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56(2): 259-290. .CrossrefGoogle Scholar

  • Wolski, T., Wisniewski, B. (2012). Changes of maximum sea levels at selected gauge stations on the Polish and Swedish Baltic coast. Studia i Prace WNEiZ vol. 29, Wydawnicto Naukowe US: 209-227.Google Scholar

  • Wróblewski, A. (1992). Analysis and forecast of long-term sea level changes along the Polish Baltic Sea coast, Part I. Annual sea level maxima. Oceanologia 33: 65-85, ISSN: 0078-3234.Google Scholar

About the article

Received: 2015-09-12

Accepted: 2015-12-09

Published Online: 2016-06-22

Published in Print: 2016-06-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 45, Issue 2, Pages 239–258, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2016-0022.

Export Citation

© Faculty of Oceanography and Geography, University of Gdañsk, Poland. All rights reserved..Get Permission

Comments (0)

Please log in or register to comment.
Log in