Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year


IMPACT FACTOR 2016: 0.544
5-year IMPACT FACTOR: 0.778

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.257
Source Normalized Impact per Paper (SNIP) 2016: 0.548

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 45, Issue 3 (Sep 2016)

Issues

Benthic diatoms of the Vrla River (Serbia) and their application in the water ecological status assessment

Olga Jakovljević
  • Corresponding author
  • University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden „Jevremovac”, Takovska 43, 11000 Belgrade, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Slađana Popović
  • University of Belgrade, Instutute of Chemistry, Technology and Metallurgy, Department of Ecology and Techoeconomics, Karnegijeva 4, 11000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivana Živić
  • University of Belgrade, Faculty of Biology, Institute of Zoology, Student Square 16, 11 000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarina Stojanović
  • University of Belgrade, Faculty of Biology, Institute of Zoology, Student Square 16, 11 000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jelena Krizmanić
  • University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden „Jevremovac”, Takovska 43, 11000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-22 | DOI: https://doi.org/10.1515/ohs-2016-0029

Abstract

Epilithic diatoms from the Vrla River (Serbia) have been used to assess the ecological status of water. A total of 227 diatom taxa belonging to 50 genera were identified in the Vrla River during six research seasons with 13 dominant species recorded. Gomphonema (30 species), Navicula (28) and Nitzschia (26) were the most species-rich genera, followed by Pinnularia (12) and Encyonema (11). One taxa was recorded as new to Serbia – Geissleria acceptata. CCA grouped the diatom taxa into three main groups. The first group included taxa found at most of the sampling sites, the second group involved diatom taxa significantly positively correlated with the oxygen, while the third group showed positive correlation with temperature. RDA showed that some diatom taxa, including: Cocconeis placentula var. placentula, C. placentula var. lineata, C. pseudolineata and Mayamaea atomus var. permitis, are significantly positively correlated with temperature, while others, for example Achnanthidium minutissimum, Hannaea arcus, Nitzschia pura are mostly correlated with total phosphorus, alkalinity and water hardness. The ecological status of the Vrla River ranged from moderate, good to high. It was shown that according to the diatom indices, the ecological status of water downstream and upstream of a trout fish pond was slightly different.

Key words: new record; Geissleria acceptata; diatom indices; ecological status of water; Vrla River

References

  • Andrejić, J. (2012). Floristic-ecological analysis of diatoms (Bacillariophyta) from the Nišava River and tributaries Jerma and Temska Rivers. Unpublished doctoral dissertation, University of Belgrade, Faculty of Biology, Serbia. (In Serbian).Google Scholar

  • Andrejić, J., Krizmanić, J. & Cvijan, M. (2012). Diatom species composition of the Nišava River and its tributaries Jerma and Temska Rivers (southern Serbia). Archives of Biological Sciences 64(3): 1127-1140. .CrossrefGoogle Scholar

  • Bąk, M., Lange-Bertalot, H., Nosek, J., Jakubowska, Z. & Kiełbasa, M. (2014). Diatoma polonica sp. nov. – a new diatom (Bacillariophyceae) species from rivers and streams of southern Poland. Oceanological and Hydrobiological Studies 43(2): 114-122. .CrossrefGoogle Scholar

  • Belal, M.D. (2012). Epipelic diatoms as a tool for monitoring pollution in River Nile from Aswan to Cairo. Unpublished master thesis, Faculty of Science - Department of Botany, Cairo UniversityGoogle Scholar

  • Bellinger, B.J., Cocquyt, C. & O’Reilly, C.M. (2006). Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia 573: 75-87. .CrossrefGoogle Scholar

  • Bothwell, M.L. (1989). Phosphorus-limited growth dynamics on lotic periphytic diatom communities Areal biomass and cellular growth rate responses. Canadian Journal of Fisheries and Aquatic Sciences 46: 1293-1301. .CrossrefGoogle Scholar

  • Cantonati, M., Angeli, N., Virtanen, L., Wojtal, A.Z., Gabrieli, J. et al. (2014). Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. Science of the Total Environment 475: 201-215. .CrossrefGoogle Scholar

  • Chételator, J., Pick, F., Morin, A. & Hamilton, P. (1999). Periphyton biomass and community composition in rivers of different nutrient status. Canadian Journal of Fisheries and Aquatic Sciences 56: 560-569. .CrossrefGoogle Scholar

  • Coste, M., Boutry, S., Tison-Rosebery, J. & Delmas, F. (2009). Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecological Indicators 9(4): 621-650. .CrossrefGoogle Scholar

  • Đeković, V., Gajić, G., Andelković, A., Milošević, N. & Kernalis, J. (2010). The water quality in the basin of Vrla River and its impact on the environmental quality. In First Serbian Forestry Congress, under slogan: Future With Forests, 11-13 November 2010 (pp. 1054-1065). Belgrade, Serbia: Belgrade University, Faculty of Forestry.Google Scholar

  • Descy, J.P. & Coste, M. (1991). A test of methods for assessing water quality based on diatoms. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 24: 2112-2116.Google Scholar

  • Descy, J.P. (1979). A new approach to water quality estimation using Diatoms. Nova Hedwigia 64: 305-323.Google Scholar

  • Eloranta, P. & Soininen, J. (2002). Ecological status of some Finnish rivers evaluated using benthic diatom communities. Journal of Applied Phycology 14(1): 1-7.Google Scholar

  • Furse, M., Hering, D, Moog, O. Verdonschot, P., Johnson, R.K., et al. (2006). The STAR project: context, objectives and approaches. Hydrobiologia 566(1): 3-29. .CrossrefGoogle Scholar

  • Hofmann, G., Werum, M. & Lange-Bertalot, H. (2013). Diatomeen im Süßwasser - Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis (pp. 1-908). Königstein: Koeltz Scientific Books.Google Scholar

  • Ivanković, A., Velagić Habul, E. & Knezović, Z. (2011). Physico-chemical characteristics of shallow, high mountain Lake Blidinje (in a karst area of Bosnia and Herzegovina) with emphasis on its trophic status. Oceanological and Hydrobiological Studies 40 (3): 19-27. .CrossrefGoogle Scholar

  • Ivanov, P.L., Chipev, N. & Temniskova, D. (2003). Diatoms of the river Iskar (Sofia plain) and their implication for water quality assessment. Part II. Diatom indices and their implication for water quality monitoring. Journal of Environmental Protection and Ecology 2(4): 301-310.Google Scholar

  • Jakovljević, O., Krizmanić, J. & Cvijan, M. (2014): Water quality assessment of the DTD hydrosystem by diatom indices. Matica Srpska Journal for Natural Sciences 127, 22-33. .CrossrefGoogle Scholar

  • Jurišić, I. (2004). Benthic algal community structure and water quality of the Zapadna Morava River Basin near Cacak. Acta Agriculurae Serbica 9(18): 13-33.Google Scholar

  • Kelly, M.G. & Whitton, B.A. (1995): The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. Journalof Applied Phycology 7: 433-444.Google Scholar

  • Kelly, M.G., Penny C.J. & Whitton, B.A. (1995). Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia 302: 179-188.Google Scholar

  • King, L., Clarke, G., Bennion, H., Kelly, M. & Yallop, M. (2006). Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology 18: 15-25. .CrossrefGoogle Scholar

  • Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. In Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (Eds.), Süßwasserflora von Mitteleuropa 2/1 (pp. 1-876). Jena: G. Fischer Verlag.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/2 (pp. 1-596). Stuttgart & Jena: G. Fischer Verlag.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1991): Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/4 (pp. 1-437). Stuttgart & New York: G. Fischer Verlag.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1991a): Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/3 (pp 1-576). Stuttgart & Jena: G. Fischer Verlag.Google Scholar

  • Krammer, K. (1997): Die cymbelloiden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 1. Allgemeines und Encyonema part. 1. In H. Lange-Bertalot & P. Kociolek (Eds.), Bibliotheca Diatomologica 36 (pp. 1-382). Berlin-Stuttgart: J. Cramer.Google Scholar

  • Krammer, K. (2000): The genus Pinnularia. Vol. 1. In H. Lange-Bertalot (Ed.), Diatoms of Europe: Diatoms of European Inland Waters and comparable habitats (pp. 1-703). Ruggell: Gantner Verlag.Google Scholar

  • Krammer, K. (2002): Cymbella. Vol. 3. In H. Lange-Bertalot (Ed.), Diatoms of Europe: Diatoms of European Inland Waters and comparable habitats (pp. 1-584). Ruggell: Gantner Verlag.Google Scholar

  • Krizmanić, J., Subakov Simić, G. & Predojević, D. (2013). Algae as water quality bioindicators of the River Djetinja. In VI International Conference „Water & Fish”, 12-14 June 2013 (pp. 342-348). Belgrade-Zemun, Serbia.Google Scholar

  • Kwandrans, J., Eloranta, P., Kawecka, B. & Wojtan, K. (1998). Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. Journal of Applied Phycology 10: 193-201. .CrossrefGoogle Scholar

  • Lange-Bertalot, H. (2001). Navicula sensu stricto. 10 genera separated from Navicula sensu lato. Frustulia. In H. Lange-Bertalot (Ed.), Diatoms of Europe: diatoms of the European inland waters and comparable habitats Vol. 2. (pp. 1-526). Ruggell: A.R.G. Gantner Verlag. K.G.Google Scholar

  • Lecointe, C., Coste, M. & Prygiel, J. (1993). „Omnidia“: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269/270: 509-513. .CrossrefGoogle Scholar

  • Lek, S., Scardi, M., Verdonschot, P.F.M., Descy, J.P. & Park, Y.S. (2005). Modelling community structure in freshwater ecosystems. Germany: Springer Science & Business Media.Google Scholar

  • Luís, A.T., Duraes, N., Almeida, S.F.P. & Silva, E.F. (2015). Integrating geochemical (surface waters, stream sediments) and biological (diatoms) approaches to assess AMD environmental impact in a pyritic mining area: Aljustrel (Alentejo, Portugal). Journal of Environmental Sciences .CrossrefGoogle Scholar

  • Nieuwenhuis, R.A., van Dam, H., Padisak, J. & Kovacs, C. (2005): Ecosurv BQE report phytobenthos. Ministry of environment and water (pp. 1-54). Hungary.Google Scholar

  • Nikitović, J. (1998). Benthic algae of the Vlasina River. Unpublished master thesis, University of Belgrade, Faculty of Biology, Belgrade. (In Serbian).Google Scholar

  • Noga, T. & Siry, T. (2010). Diversity of diatom flora in the Łubienka stream (the Dynów foothills, south-eastern Poland). Polish Society of Ecological Engineering 12: 75-86. (In Polish).Google Scholar

  • Noga, T., Stanek-Tarkowska, J., Kochman, N., Peszek, Ł., Pajqczek, A. et al. (2013b). Application of diatoms to assess the quality of the waters of the Baryczka stream, left-side tributary of the River San. Journal of Ecological Engineering 14(3): 8-23. .CrossrefGoogle Scholar

  • Noga, T., Stanek-Tarkowska, J., Peszek, Ł., Pajqczek, A. & Kowalska, S. (2013a). Use of diatoms to asses water quality of anthropogenically modified Matysówka stream. Journal of Ecological Engineering 14(2): 1-11. .CrossrefGoogle Scholar

  • Novais, M.H., Wetzel, C.E., Van de Vijver, B., Morais, M.M., Hoffmann, L. et al. (2013). New species and combinations in the genus Geissleria (Bacillariophyceae). Cryptogamie,Algologie 34(2): 117-148. .CrossrefGoogle Scholar

  • Peterson, B.J., Hobbie, J.E., Hershey, A.E., Lock, M.A., Ford, T.E. et al. (1985). Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229: 1383-1386. .CrossrefGoogle Scholar

  • Ponader, K.C. & Potapova, M.G. (2007). Diatoms from the genus Achnanthidium in flowing waters of the Appalachian Mountains (North America): Ecology, distribution and taxonomic notes. Limnologica 37: 227-241. .CrossrefGoogle Scholar

  • Pringle, C.M. (1990). Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905-920. .CrossrefGoogle Scholar

  • Reichardt, E. (1997). Taxonomic revision of the species complex Gomphonema pumilum (Bacillariophyceae). Nova Hedwigia. 65: 99-129. (In German).Google Scholar

  • Reichardt, E. (1999): Zur Revision der Gattung Gomphonema: Die Arten um G. affine/insigne, G. angustatum/micropus, G. acuminatum sowie gomphonemoide Diatomeen aus dem Oberoligozän in Böhmen. In H. Lange-Bertalot (Ed.), Iconographia Diatomologica (pp. 1-203). Ruggell: Gantner Verlag.Google Scholar

  • Silva, E.F., Almeida, S.F.P., Nunes, M.L., Luís, A.T., Borg, F. et al. (2009). Heavy metal pollution downstream the abandoned Coval da Mó mine (Portugal) and associated effects on epilithic diatom communities. Science of the Total Environment 407: 5620-5636. .CrossrefGoogle Scholar

  • Sladecek, V. (1986). Diatoms as indicators of organic pollution. Acta Hydrochimica et Hydrobiologica 14(5): 555-566.Google Scholar

  • Solak, C.N. & Àcs, É. (2011). Water quality monitoring in European and Turkish rivers using diatoms. Turkish Journal of Fisheries and Aquatic Sciences. 11: 329-337. .CrossrefGoogle Scholar

  • Solak, C.N., Ector, L., Wojtal, A., Ács, É. & Morales, E. (2012). A review of investigations on diatoms (Bacillariophyta) in Turkish inland waters. Nova Hedwigia Beiheft. 141: 431-462.Google Scholar

  • Stevenson, R.J., Bothwell, M.L. & Lowe, R.L. (1996). Algal Ecology. Freshwater benthic ecosystems. California, USA: Academic Press.Google Scholar

  • Szczepocka, E., Szulc, B., Szulc, K., Rakowska, B. & Żelazna-Wieczorek, J. (2014). Diatom indices in the biological assessment of the water quality based on the example of a small lowland river. Oceanological and Hydrobiological Studies 43(3): 265-273. .CrossrefGoogle Scholar

  • Szulc, B. & Szulc, K. (2013). The use of the Biological Diatom Index (BDI) for the assessment of water quality in the Pilica River, Poland. Oceanological and Hydrobiological Studies 42(2): 188-194. .CrossrefGoogle Scholar

  • Szulc, B. (2007). Benthic diatoms of the Pilica River 50 years ago and today. Oceanological and Hydrobiological Studies 36(1): 221-226.Google Scholar

  • Ter Braak, C.J.F. & Šmilauer, P. (2012). Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca. USA: Microcomputer Power.Google Scholar

  • TomaŠević, V. (2000). Siliceous algae from the West Morava River basin. Unpublished master thesis, University of Belgrade, Faculty of Biology, Belgrade. (In Serbian).Google Scholar

  • Torrisi, M. & Dell’Uomo, A. (2006). Biological monitoring of some Apennine rivers (central Italy) using the diatom-based eutrophication / pollution index (EPI-D) compared to other European diatom indices. Diatom Research 21(1): 159-174. .CrossrefGoogle Scholar

  • Van Dam, H., Mertens, A. & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherland Journal of Aquatic Ecology 28(1): 117-133. .CrossrefGoogle Scholar

  • Várbíró, G., Borics, G., Csányi, B., Fehér, G., Grigorszky, I. et al. (2012). Improvement of the ecological water qualification system of rivers based on the first results of the Hungarian phytobenthos surveillance monitoring. Hydrobiologia 695: 125-135. .CrossrefGoogle Scholar

  • Vasiljević, B., Krizmanić, J., Ilić, M., Marković, V., Tomović, J. et al. (2014): Water quality assessment based on diatom indices - small hilly streams case study. Water Research and Management. 4(2): 31-35.Google Scholar

  • Vidaković, D. (2013). Assessment of the ecological status of Raška River based on epilithic diatoms. Unpublished master thesis, University of Belgrade, Faculty of Biology, Belgrade. (In Serbian).Google Scholar

  • Vilbaste, S. & Truu, J. (2003). Distribution of benthic diatoms in relation to environmental variables in lowland streams. Hydrobiologia 493: 81-93. .CrossrefGoogle Scholar

About the article

Received: 2015-10-30

Accepted: 2015-12-23

Published Online: 2016-09-22

Published in Print: 2016-09-01


Citation Information: Oceanological and Hydrobiological Studies, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2016-0029.

Export Citation

© Faculty of Oceanography and Geography, University of Gdańsk, Poland. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in