Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 45, Issue 3

Issues

Dry weight and calcium carbonate encrustation of two morphologically different Chara species: a comparative study from different lakes

Andrzej Pukacz
  • Corresponding author
  • Polish-German Research Institute, Collegium Polonicum, Adam Mickiewicz University in Poznań, ul. Kościuszki 1, 69-100 Słubice, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariusz Pełechaty
  • Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcin Frankowski
  • Department of Water and Soil Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Umultowska 89b, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eugeniusz Pronin
  • Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-22 | DOI: https://doi.org/10.1515/ohs-2016-0034

Abstract

Two charophyte species (Chara tomentosa Thulli. 1799 and Chara globularis L. 1753) were studied to assess their biomass and CaCO3 production in seven hard-water lakes in Western Poland. In each lake, samples of ten individuals from three study sites were collected for dry weight (DW) and calcium carbonate content (% CaCO3) analyses. Additionally, physicochemical parameters of water collected from the above sampling sites were analyzed.

No significant differences were found between the study sites in each lake for any of the analyzed parameters. In all the lakes, DW of C. tomentosa (0.60 ± 0.23 g indiv.-1) was significantly higher and more differentiated than DW of C. globularis (0.11 ± 0.08 g indiv.-1), suggesting species-specificity. The CaCO3 content in DW for C. tomentosa was higher (58.8-70.9%) than in C. globularis (50.1-68.3%), however, it did not reflect the DW differentiation, suggesting lake-specificity. The physicochemical properties of water revealed clear lake-to-lake differentiation. Different correlations between dry weight and calcium carbonate content and lake characteristics were found for each species. The results showed that DW and % CaCO3 are closely related to habitat conditions and different factors may influence the individual biomass of each species.

Keywords: charophytes; individual biomass; calcite encrustation; water properties; inter-lake; variability

References

  • Asaeda, T., Senavirathna, M.D.H.J., Kaneko, Y. & Rashid, M.H. (2014). Effect of calcium and magnesium on the growth and calcite encrustation of Chara fibrosa. Aquat. Bot. 113: 100-106. .CrossrefGoogle Scholar

  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H. et al. (2006). Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185: 131-145. .CrossrefGoogle Scholar

  • Blindow, I., Hargeby, A. & Andersson, G. (2002). Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquat. Bot. 72: 315-334. .CrossrefGoogle Scholar

  • Blindow, I., Hargeby, A. & Hilt, S. (2014). Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737: 99-110. .CrossrefGoogle Scholar

  • Blindow, I. (1992a). Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biol. 28: 15-27. .CrossrefGoogle Scholar

  • Blindow, I. (1992b). Decline of charophytes during eutrophication; a comparison to angiosperms. Freshwater Biol. 28: 9-14. .CrossrefGoogle Scholar

  • Cyrwus, A. 2009. Phytocoenotic diversity of rush and aquatic vegetation and the spatial structure of Lake Karskie, Unpublished master thesis. Faculty of Biology, Adam Mickiewicz University in Poznan. (In Polish).Google Scholar

  • Dittrich, M. & Koschel, R. (2002). Interactions between calcite precipitation (natural or artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49-57. .CrossrefGoogle Scholar

  • Dittrich, M., Obst, M. (2004). Are picoplankton responsible for calcite precipitation in lakes? Ambio. 33: 559-564. .CrossrefGoogle Scholar

  • Heiri, O., Lotter, A.F. & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 25: 101-110. .CrossrefGoogle Scholar

  • Hutchinson, G.E. (1975). A Treatise on Limnology, Vol. 3: Limnological Botany. Wiley; Chapman and Hall Ltd., New York; London.Google Scholar

  • Janczak, J. (1996). Atlas of Polish lakes. Vol. I. Lakes of Pojezierze Wielkopolskie and Pomorskie lakelands within the Odra basin. Instytut Meteorologii i Gospodarki Wodnej, Bogucki Wydawnictwo Naukowe, Poznan. (In Polish).Google Scholar

  • Kelts, K., Hsü, K.J., (1978). Freshwater carbonate sedimentation. In A. Lerman (Ed.), Lakes. Chemistry, geology, physics (pp. 295-323) Springer – Verlag, New York, Heidelberg, Berlin.Google Scholar

  • Krause, W. (1997). Charales (Charophycae). Süsswasserflora von Mitteleuropa, Band 18. Gustav Fischer. Jena, Germany.Google Scholar

  • Krause, W. (1997). Charales (Charophyceae). Susswasserflora von Mitteleuropa, Band 18. – Gustav Fischer, Jena. (In German).Google Scholar

  • Krolikowska, J. (1997). Eutrophication processes in a shallow, macrophytes dominated lake – species differentiation, biomass and the distribution of submerged macrophytes in Lake Łuknajno (Poland). Hydrobiologia 342/343: 411416. .CrossrefGoogle Scholar

  • Kufel, L., Biardzka, E. & Strzałek, M. (2013). Calcium carbonate incrustation and phosphorus fractions in five charophyte species. Aquat. Bot. 109: 54-57. .CrossrefGoogle Scholar

  • Kufel, L. & Kufel, I. (2002). Chara beds acting as nutrient sinks in shallow lakes – a review. Aquat. Bot. 72: 249-260. .CrossrefGoogle Scholar

  • Kufel, L. & Rymuza, K. (2014). Comparing the effect of phytoplankton and charophyte on calcite precipitation in lake water: experimental approach. Pol. J. Ecol. 62: 431439. .CrossrefGoogle Scholar

  • McConnaughey, T.A. & Falk, R.H. (1991). Calcium-proton exchange during algal calcification. Biol. Bull. 180: 185-195. .CrossrefGoogle Scholar

  • Murphy, T.P., Kali, K.J. & Yesaki, I. (1983). Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnol. Oceanogr. 28: 56-96. .CrossrefGoogle Scholar

  • Otsuki, A. & Wetzel, R.G. (1972). Coprecipitation of phosphate with carbonates in a marl lake. Limnol. Oceanogr. 17: 763767. .CrossrefGoogle Scholar

  • Pełechaty, M., Pełechata, A. & Pukacz, A. (2007). Charophyte flora and vegetation against the background of the trophy state of Lubuskie Lakeland, mid-Western Poland. Bogucki Wydawnictwo Naukowe, Poznan. (In Polish).Google Scholar

  • Pełechaty, M., Pukacz, A., Apolinarska, K., Pełechata, A. & Siepak, M. (2013). The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 60: 1017-1035. .CrossrefGoogle Scholar

  • Pełechaty, M., Ossowska, J., Pukacz, A., Apolinarska, K. & Siepak, M. (2015) Site-dependent species composition, structure and environmental conditions of Chara tomentosa L. meadows, western Poland. Aquat. Bot. 120: 92-100. .CrossrefGoogle Scholar

  • Pełechaty, M. & Pukacz, A. (2006). Charophyte flora and vegetation of lakes of Wędrzyn Military Training Ground and Łagów Landscape Park (mid-Western Poland) against the background of the state of aquatic and rush vegetation. Ekologia i Technika 14(6): 237-245. (In Polish).Google Scholar

  • Pełechaty, M. & Pukacz, A. (2008). Identification key for charophytes (Characeae) in rivers and lakes. Inspekcja Ochrony Srodowiska. Biblioteka Monitoringu Srodowiska, Warszawa. (In Polish).Google Scholar

  • Pentecost, A., Andrews, J.E., Dennis, P.F., Marca-Bell, A. & Dennis S. (2006). Charophyte growth in small temperate water bodies: Extreme isotopic disequilibrium and implications for the palaeoecology of shallow marl lakes. Palaeogeograph., Palaeoclimatol., Palaeoecol. 240: 389-404. .CrossrefGoogle Scholar

  • Pentecost, A. (1984). The growth of Chara globularis and its relationship to calcium carbonate deposition in Malham Tarn. Field Studies 6: 53-58.Google Scholar

  • Pukacz, A. & Pełechaty, M. (2013). Spatial structure of vegetation in a small charophyte dominated lake. Biodiversity Research and Conservation 29: 97-104. .CrossrefGoogle Scholar

  • Pukacz, A., Pełechaty, M. & Petrovic, S. (2011). The use of morphometric characteristics in the identification of two morphologically similar charophytes: Chara globularis and Chara virgata. Biologia, Section Botany. 66: 425-428. .CrossrefGoogle Scholar

  • Pukacz, A., Pełechaty, M. & Pełechata, A. (2013). The relation between charophytes and habitat differentiation in temperate lowland lakes. Pol. J. Ecol. 61: 1-14.Google Scholar

  • Ray, S. Klennel, M., Choo, K.S., Pedersen, M. & Snoeijs, P. (2003). Carbon acquisition mechanisms in Chara tomentosa. Aquat. Bot. 76: 141-154. .CrossrefGoogle Scholar

  • Pukacz, A., Pełechaty, M., Frankowski, M., Kowalski, A. & Zwijacz-Koszałka, K. (2014). Seasonality of water chemistry, carbonate production, and biometric features of two species of chara in a shallow clear water lake. The Scientific World Journal, DOI: 10.1155/2014/167631.CrossrefGoogle Scholar

  • Ray, S. Klennel, M., Choo, K.S., Pedersen, M. & Snoeijs, P. (2003). Carbon acquisition mechanisms in Chara tomentosa. Aquat. Bot. 76: 141-154. .CrossrefGoogle Scholar

  • Rodrigo, M.A., Rojo, C., Álvarez-Cobelas, M., & Cirujano, S. (2007). Chara hispida beds as a sink of nitrogen: Evidence from growth, nitrogen uptake and decomposition. Aquat. Bot. 87: 7-14. .CrossrefGoogle Scholar

  • Schneider, C.S., Garcia, A., Martin-Closas, C. & Chivas, A.R. (2015). The role of charophytes (Charales) in past and present environments: An overview. Aquat. Bot. 120: 2-6. .CrossrefGoogle Scholar

  • Siong, K. & Asaeda, T. (2009). Effect of magnesium on charophytes calcification: implications for phosphorus speciation stored in biomass and sediment in Myall Lake (Australia). Hydrobiologia 632: 247-259. .CrossrefGoogle Scholar

  • Smith, F.A., & Walker, N.A., (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3- and to carbon isotopic discrimination. Phytologist 86: 245-259.Google Scholar

  • Urbaniak, J. & Gabka, M. (2014). Polish Charophytes -an illustrated guide to identification. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Wrocław.Google Scholar

  • Van den Berg, M.S., Coops, H., Meijer. M.-L., Scheffer, M. & Simons J. (1998). Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In E. Jeppesen, M. Søndergaard, M. Søndergaard & K. Christoffersen (Eds.), The Structuring Role of Submerged Macrophytes in Lakes (pp. 339-352). Springer, New York.Google Scholar

  • Wetzel, R.G. (1960). Marl encrustation on hydrophytes in several Michigan lakes. Oikos. 11: 223-236.Google Scholar

  • Wetzel, R.G. (2001). Limnology, Lake and River Ecosystems (3rd ed.). Academic Press, San Diego.Google Scholar

  • Wood, R.D. & Imahori, K.A. (1965). A revision of the Characeae. Cramer, Weinheim.Google Scholar

About the article

Received: 2015-10-27

Accepted: 2016-02-22

Published Online: 2016-09-22

Published in Print: 2016-09-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 45, Issue 3, Pages 377–387, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2016-0034.

Export Citation

© 2016 Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anne Herbst and Hendrik Schubert
Botanical Studies, 2018, Volume 59, Number 1
[2]
Anne Herbst, Wolf von Tümpling, Hendrik Schubert, and L. Graham
Journal of Phycology, 2018

Comments (0)

Please log in or register to comment.
Log in