Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 45, Issue 4


Impact of habitat heterogeneity on the biodiversity and density of the zooplankton community in shallow wetlands (Upo wetlands, South Korea)

Jong-Yun Choi
  • Corresponding author
  • National Institute of Ecology, Seocheon-gun Maseo-myon Geumgang-ro 1210, Chungcheongnam-do, Republic of Korea
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kwang-Seuk Jeong
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seong-Ki Kim
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gea-Jae Joo
  • Department of Biological Sciences, Pusan National University, Busan 609-735, Republic of Korea
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-14 | DOI: https://doi.org/10.1515/ohs-2016-0041


Macrophytes play a major role in the structuring of aquatic environments, and create diverse microhabitats. Therefore, these plants represent an important factor regulating the zooplankton biomass, taxonomic composition, and distribution in freshwater ecosystems. In the current study, we examined the effects of the structural heterogeneity provided by various macrophytes. We identified four habitat types in this study: (1) open water (without macrophytes), (2) the helophyte zone, (3) the pleustophyte zone, and (4) the mixed vegetation zone (containing pleustophytes, nymphaeids, and elodeids). We tested the hypothesis that complex habitat structures support large zooplankton assemblages. Specifically, we collected zooplankton samples from a total of 119 sampling points in the Upo Wetlands, South Korea, during the spring and autumn of 2009. The largest zooplankton assemblage was found in the mixed macrophyte zone, followed by the helophyte and pleustophyte zones. The pleustophyte zone supported larger zooplankton assemblages during autumn compared to spring. Differences in zooplankton assemblages were considered to be strongly related to seasonal variation in the development and growth of pleustophytes. However, two-way ANOVA revealed that seasons had no significant influence on the zooplankton density and diversity. Instead, different habitat types substantially determined zooplankton characteristics. In conclusion, we demonstrated that wetland areas with high macrophyte species diversity contribute toward higher zooplankton diversity.

Keywords: aquatic macrophytes; habitat complexity; epiphytic species; elodeids


  • Bazzaz, F.A. (1975). Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56: 485-488.Google Scholar

  • Beklioglu, M. & Moss, B. (1996). Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwater Biol. 36: 315-325. .CrossrefGoogle Scholar

  • Burks, R.L., Lodge, D.M., Jeppesen, E. & Lauridsen, T.L. (2002). Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshwater Biol. 47: 343-365. .CrossrefGoogle Scholar

  • Chao, A. & Shen, T.J. (2010). Program SPADE (Species Prediction And Diversity Estimation). Program and User’s Guide. Available at: http://chao.stat.nthu.edu.tw.

  • Declerck, S., Vandekerkhove, J., Johansson, L., Muylaert, K., Conde-Porcuna, J.M. et al. (2005). Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905-1915. .CrossrefGoogle Scholar

  • Dennis, P., Young, M.R. & Gordon, I.J. (1998). Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands. Ecol. Entomol. 23: 253-264. .CrossrefGoogle Scholar

  • Fennessy, M.S., Cronk, J.K. & Mitsch, W.J. (1994). Macrophyte productivity and community development in created freshwater wetlands under experimental hydrological conditions. Ecol. Eng. 3: 469-484. .CrossrefGoogle Scholar

  • Ganzhorn, J.U., Malcornber, S., Andrianantoanina, O. & Goodman, S.M. (1997). Habitat characteristics and lemur species richness in Madagascar. Biotropica 29: 331-343. .CrossrefGoogle Scholar

  • Hanowski, J.M., Niemi, G.J. & Christial, D.C. (1997). Influence of within-plantation heterogeneity and surrounding landscape composition on avian communities in hybrid poplar plantations. Conserv. Biol. 11: 936-944. .CrossrefGoogle Scholar

  • Jeong, K.S., Kim, D.K. & Joo, G.J. (2007). Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Res. 41: 1269-1279. .CrossrefGoogle Scholar

  • Jeppesen, E., Lauridsen, T.L., Kairesalo, T. & Perrow, M.R. (1998). Impact of submerged macrophytes on fish– zooplankton interactions in lakes. In E. Jeppesen, M. Søndergaard, M. Søndergaard, K. Christoffersen (Eds.), The Structuring Role of Submerged Macrophytes in Lakes (pp. 91-114). Springer Verlag, New York.Google Scholar

  • Jones, G.P. & Syms, C. (1998). Disturbance, habitat structure and the ecology of fishes on coral reefs. Aust. J. Ecol. 23: 287-297. .CrossrefGoogle Scholar

  • Kuczynska-Kippen, N. & Nagengast, B. (2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia 559: 203-212. .CrossrefGoogle Scholar

  • Lauridsen, T.L. & Lodge, D.M. (1996). Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 41: 794-798. .CrossrefGoogle Scholar

  • Lauridsen, T., Pedersen, L.J., Jeppesen, E. & Søndergaard, M. (1996). The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283-2294. .CrossrefGoogle Scholar

  • Manatunge, J., Asaeda, T. & Priyadarshana, T. (2000). The influence of structural complexity on fish-zooplankton interactions: A study using artificial submerged macrophytes. Environ, biol. Fish. 58: 425-438. .CrossrefGoogle Scholar

  • Meerhoff , M., Mazzeo, N., Moss, B. & Rodríguez-Gallego, L. (2003). The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquat. Ecol. 37: 377-391. .CrossrefGoogle Scholar

  • Meerhoff , M., Fosalba, C., Bruzzone, C., Mazzeo, N., Noordoven, W. et al. (2006). An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biol. 51: 1320-1330. .CrossrefGoogle Scholar

  • Mizuno, T. & Takahashi, E. (1999). An illustrated guide to freshwater zooplankton in Japan. Tokai University press. Tokyo.Google Scholar

  • Moss, B., Kornijow, R. & Measey, G. (1998). The effect of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biol. 39: 689-697. .CrossrefGoogle Scholar

  • Roberts, C.M. & Ormond, R.F.G. (1987). Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar. Ecol. Prog. Ser. 41: 1-8. .CrossrefGoogle Scholar

  • Schriver, P., Bogestrand, J., Jeppesen, E. & Sondergaard, M. (1995). Impact of submerged macrophytes on fishzooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biol. 33: 255-270. .CrossrefGoogle Scholar

  • Shannon, C.E. & Weaver, W. (1949). A mathematical theory of communication. University of Illinois Press, Urbana, USA.Google Scholar

  • Snickars, M., Sandström, A. & Mattila, J. (2004). Antipredator behaviour of 0+ year Perca fluviatilis: effect of vegetation density and turbidity. J. Fish Biol. 65: 1604-1613. .CrossrefGoogle Scholar

  • Southwell, C.J., Cairns, S.C., Pople, A.R. & Delaney, R. (1999). Gradient analysis of macropod distribution in open forest and woodland of eastern Australia. Aust. J. Ecol. 24: 132-143. .CrossrefGoogle Scholar

  • Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J. & Bini, L.M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biol. 53: 358-367. .CrossrefWeb of ScienceGoogle Scholar

  • van der Valk, A.G. (2006). The biology of freshwater wetlands. Oxford University Press. Oxford, 2 p.Google Scholar

  • Vermaat, J.E., Santamaria, L. & Roos, P.J. (2000). Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv für Hydrobiologie 148: 549-62.Google Scholar

  • Vieira, L.C.G., Bini, L.M., Velho, L.F.M. & Mazão, G.R. (2007). Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae. Fund. Appl Limnol. 170: 77-85. http://dx.doi.org/10.1127/1863-9135/2007/0170-0077.Crossref

  • Warfe, D.M. & Barmuta, L.A. (2004). Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171-178. .CrossrefGoogle Scholar

  • Wetzel, R G. (1983). Limnology. Saunders College Publishing. Philadelphia.Google Scholar

  • Wetzel, R.G. & Likens, G.E. (2000). Limnological Analyses. Springer-Verlag. NY. Google Scholar

About the article

Received: 2016-02-28

Accepted: 2016-04-19

Published Online: 2016-12-14

Published in Print: 2016-12-01

Citation Information: Oceanological and Hydrobiological Studies, Volume 45, Issue 4, Pages 485–492, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2016-0041.

Export Citation

© Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved..Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jong-Yun Choi, Nam-Young Kim, Tae-Bok Ryu, Dong-Hee Choi, Deok-ki Kim, and Seong-Ki Kim
Korean Journal of Environment and Ecology, 2018, Volume 32, Number 4, Page 425

Comments (0)

Please log in or register to comment.
Log in