Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 46, Issue 1

Issues

Diatom-based reconstruction of trophic status changes recorded in varved sediments of Lake Żabińskie (northeastern Poland), AD 1888-2010

Małgorzata Witak / Ivan Hernández-Almeida
  • Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Grosjean
  • Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wojciech Tylmann
Published Online: 2017-03-06 | DOI: https://doi.org/10.1515/ohs-2017-0001

Abstract

We investigated diatom assemblages in surface sediments of 46 lakes in northern Poland and developed a diatom-based transfer function to infer epilimnetic total phosphorus (TP) concentrations. Multivariate ordination techniques (DCA, CCA) were used to identify major environmental gradients and to evaluate the effect of environmental parameters on the distribution of diatoms in the modern diatom dataset. The transfer function was developed using PLS, WA and WA-PLS models, and applied to a varved sediment core from Lake Żabińskie, AD 1888-2010. Annually-resolved quantitative reconstruction of TP concentrations shows that multidecadal changes in the TP level reflect the local settlement history, land-use changes and development of agriculture and tourism. The period of high trophic levels with maximum values of TP was documented until the late 1920s. In the 1930s-1970s period, TP generally decreased and eutraphentic flora was partly replaced by oligotraphentic and oligo-mesotraphentic diatom taxa. The reconstructed TP concentrations have started to increase from the 1970s. After the 1950s, strong short-term fluctuations of TP values were noted and explained by interactions between meteorological conditions, water column mixing and nutrient cycling in the lake.

Key words: diatoms; trophic changes; varves; Lake Żabińskie; Poland

References

  • Amann, B., Lobsinger, S., Fischer, D., Tylmann, W., Bonk, A. et al. (2014). Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, AD 1907-2008. Global Planet Change 123: 86-96. DOI: 10.1016/j.gloplacha.2014.10.008.Google Scholar

  • Anderson, N.J. (1993). Natural versus anthropogenic change in lakes: the role of the sediment record. Trends in Ecology & Evolution 8: 356-361. DOI: 10.1016/0169-5347(93)90219-F.CrossrefGoogle Scholar

  • Battarbee, R.W. (1986). Diatom analysis. In B.E. Berglund (Ed.), Handbook of Holocene palaeoecology and palaeohydrology (pp. 527-570). Publisher Wiley-Interscience: Chichester.Google Scholar

  • Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H. et al. (2001). Diatoms. In J.P. Smol, H.J.B. Birks, W.M. Last (Eds.) Tracking Environmental Change Using Lake Sediments. 3: Terrestrial, Algal, and Siliceous Indicators. (pp. 155-202). Dordrecht: Kluwer Academic Publishers. DOI: 10.1007/0-306-47668-1_8.Google Scholar

  • Battarbee, R.W., Anderson, N.J., Jeppensen, E. & Leavit, P.R. (2005). Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology 50: 1772-1780. DOI: 10.1111/j.1365-2427.2005.01427.x.CrossrefGoogle Scholar

  • Bennion, H., Appleby P.G. & Philips G.L. (2001). Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. Journal of Paleolimnology 26: 181-204. DOI: 10.1023/A:1011137625746.CrossrefGoogle Scholar

  • Bennion, H., Wunsam, S. & Schmidt, R. (1995). The validation of diatom-phosphorus transfer functions: An example from Mondsee, Austria. Freshwater Biology 34: 271-283. DOI: 10.1111/j.1365-2427.1995.tb00887.x.CrossrefGoogle Scholar

  • Bhattacharyya, P. & Volcani, B.E. (1980). Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proceedings of the National Academy of Science USA 77: 6386-6390. DOI: 10.1073/pnas.77.11.6386.CrossrefGoogle Scholar

  • Birks, H.J.B. (1995). Quantitative palaeoenvironmental reconstructions. Statistical modelling of quaternary science data. Tech guide 5: 161-254.Google Scholar

  • Birks, H.J.B. (1998). Numerical tools in palaeolimnology – Progress, potentialities, and problems. Journal of Paleolimnology 20: 307-332. DOI: 10.1023/A:1008038 808690.CrossrefGoogle Scholar

  • Bodén, P. (1991). Reproducibility in the Random Settling Method for Quantitative Diatom Analysis. Micropaleontology 37(3): 313-319. DOI: 10.2307/1485893.CrossrefGoogle Scholar

  • Bonk, A., Tylmann, W., Amann, B., Enters, D. & Grosjean, M. (2015a). Modern limnology and varve-formation processes in Lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record. Journal of Limnology 74: 358-370. DOI: 10.4081/ jlimnol.2014.1117.CrossrefGoogle Scholar

  • Bonk, A., Tylmann, W., Goslar, M., Wacnik, A. & Grosjean, M. (2015b.) Comparing varve counting and 14C-AMS chronologies in the sediments of Lake Żabińskie, northeastern Poland: implications for accurate 14C dating of lake sediments, Geochronometria 42: 159-171. DOI: 10.1515/geochr-2015-0019.Google Scholar

  • Bradshaw, E.G. & Anderson N.J. (2001). Validation of a diatomphosphorus calibration set for Sweden. Freshwater Biology 47: 1963-1975. DOI: 10.1046/j.1365-2427.2001.00732.x.CrossrefGoogle Scholar

  • Briand, J.F., Jacquet S., Bernard, C. & Humbert, J.F. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary Research 34: 361-377. DOI: 10.1051/vetres:2003019.CrossrefGoogle Scholar

  • Carpenter, S.R., Caraco, N.F., Correll, D.L., Howard, R.W., Sharpley, A.N. & Smith, V.H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559-568. DOI: 10.2307/2641247.CrossrefGoogle Scholar

  • Denys, L. (1991). A check-list of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements. I. Introduction, ecological code and complete list. Professional Paper Belgium Geological Survey 246: 1-41.Google Scholar

  • Dodds, W.K., Bouska, W.W., Eitzmann, J.L., Pilger, T.J., Pitts, K.L. et al. (2009). Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science & Technology 43: 12-19. DOI: 10.1021/es801217q.CrossrefGoogle Scholar

  • Finsinger, W., Bigler, C, Krähenbühl, U., Lotter, A.F. & Ammann, B. (2006). Human impact and eutrophication patterns during the last 200 years at Lago Grande di Avigliana (N. Italy). Journal of Paleolimnology 36: 55-67. DOI: 10.1007/ s10933-006-0002-x.Google Scholar

  • Harper, D. (1992). Eutrophication of Freshwaters. London: Chapman Hall.Google Scholar

  • Håkansson, H. (2002). A compilation and evaluation of species in the general Stephanodiscus, Cyclostephanos and Cyclotella with a new genus in the family Stephanodiscaceae. Diatom Research 17(1): 1-139. DOI: 10.1080/0269249X.2002.9705534.CrossrefGoogle Scholar

  • Hall, R.I., Smol, J.P. (2010). Diatoms as indicators of lake eutrophication. In J.P. Smol & E.F. Stoermer (Eds.), The Diatoms: Applications for the Environmental and Earth Sciences (pp. 122-151). Cambridge: Cambridge University Press. Chapter DOI: 10.1017/CBO9780511763175.008.CrossrefGoogle Scholar

  • Hall, R.I., Leavitt, PR., Dixit, A.S., Quinlan, R. & Smol, J.R. (1999). Effects of agriculture, urbanization and climate on water quality in the northern Great Plains. Limnology and Oceanography 44: 739-756. DOI: 10.4319/lo.1999.44.3_part_2.0739.CrossrefGoogle Scholar

  • Hall, R.I. & Smol, J.P. (1992). A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 27: 417-434. DOI: 10.1111/j.1365-2427.1992.tb00551.x.CrossrefGoogle Scholar

  • Hernández-Almeida, I., Grosjean, M., Tylmann, W. & Bonk, A. (2015a). Chrysophyte cyst-inferred variability of warm season lake water chemistry and climate in northern Poland: training set and downcore reconstruction. Journal of Paleolimnology 53: 123-138. DOI: 10.1007/s10933-014-9812-4.CrossrefGoogle Scholar

  • Hernández-Almeida, I., Grosjean, M., Tylmann, W. & Bonk, A. (2015b). A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability. Quaternary Science Review 122: 74-88. DOI: 10.1016/j.quascirev.2015.05.029.CrossrefGoogle Scholar

  • Hill, M.O. & Gauch, H.G. Jr (1980). Detrended correspondence analysis: An improved ordination technique. Vegetatio 42: 47-58. DOI: 10.1007/BF00048870.CrossrefGoogle Scholar

  • Hofmann, G. (1994). Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Biblioteca Diatomologica 30: 1-241.Google Scholar

  • Jordan, P., Roppey, B. & Anderson, N.J. (2002). The 20th century whole-basin trophic story of an inter-drumlin lake in an agricultural catchment. Science of the Total Environment 297: 161-173. DOI: 10.1016/S0048-9697(02)00135-3.CrossrefGoogle Scholar

  • Juggins, S. (2003). C2 data analysis. England: University of Newcastle.Google Scholar

  • Juggins, S. (2013). Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quaternary Science Review 64: 20-32. DOI: 10.1016/j. quascirev.2012.12.014.CrossrefGoogle Scholar

  • Juggins, S., Anderson, N.J., Hobbs, J.M.R. & Heathcote, A.J. (2013). Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. Journal of Paleolimnology 49: 373-390. DOI: 10.1007/s10933-013-9678-x.CrossrefGoogle Scholar

  • Kauppinen, E.S. (2013). Trophic state of the Great Masurian Lakes system in the past, present and future – causes, mechanisms and effects of changes, PhD thesis, University of Warsaw: 1-134.Google Scholar

  • Kauppila, T, Moiso, T. & Salonen, V-P. (2002). A diatom-based inference model for autumn epilimnetic total phosphorus and its application to a presently eutrophic boreal lake. Journal of Paleolimnology 27: 261-273. DOI: 10.1023/A:1014281817358.CrossrefGoogle Scholar

  • Kirilova, E.P., Heiri, O., Bluszcz, P., Zolitschka, B. & Lotter, A. (2011). Climate-driven shifts in diatom assemblages recorded in annually laminated sediments of Sacrower See (NE Germany). Aquatic Sciences 73: 201-210. DOI: 10.1007/s00027-010-0169-0.CrossrefGoogle Scholar

  • Köster, D. & Pienitz, R. (2006). Seasonal diatom variability and paleolimnological inferences – a case study. Journal of Paleolimnology 35: 395-416. DOI: 10.1007/s10933-005-1334-7.CrossrefGoogle Scholar

  • Krammer, K. (2000). The genus Pinnularia. In H. Lange-Bertalot (Ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats 1. Ruggell: A.R.G. Gantner Verlag K.G.Google Scholar

  • Krammer, K. (2002). Cymbella. In H. Lange-Bertalot (Ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats 3. Ruggell: A.R.G. Gantner Verlag K.G.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/1. Stuttgart & New York: G. Fischer.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/2. Stuttgart & New York: G. Fischer.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1991a). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/3. Stuttgart & Jena: G. Fischer.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1991b). Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis. H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/4. Stuttgart & Jena: G. Fischer.Google Scholar

  • Lange-Bertalot, H. (2001). Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato, Frustulia. In H. Lange-Bertalot (Ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats 2. Ruggell: A.R.G. Gantner Verlag K.G.Google Scholar

  • Larocque-Tobler, I., Filipiak, J., Tylmann, W., Bonk, A. & Grosjean, M. (2015). Comparison between chironomidinferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumental data since 1896 AD. Quaternary Science Review 111: 35-50. DOI: 10.1016/j. quascirev.2015.01.001.CrossrefGoogle Scholar

  • Larocque-Tobler, I., Filipiak, J., Tylmann, W., Bonk, A. & Grosjean, M. (2016). Corrigendum to “Comparison between chironomid-inferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumental data since 1896 AD” [Quat. Sci. Rev. 111 (2015) 35-50]. Quaternary Science Review 140: 163-167. DOI: 10.1016/j. quascirev.2016.01.020.CrossrefGoogle Scholar

  • Legendre, P. (1987). Constrained clustering. In P. Legendre & L. Legendre (Eds.), Developments in Numerical Ecology (pp. 289-307). Berlin: Springer-Verlag.Google Scholar

  • Lepš, J. & Šmilauer, P. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge: Cambridge University Press.Google Scholar

  • Lotter, A.F. (1998). The recent eutrophication of Beldeggersee (Switzerland) as assessed by fossil diatom assemblages. The Holocene 8(4): 395-405. DOI: 10.1191/095968398674589725.CrossrefGoogle Scholar

  • Marchetto, A., Lami, A., Musazzi, S., Massaferro, J., Langone, L. et al. (2004). Lake Maggiore (N. Italy) trophic story: fossil diatom, plant pigments, and chironomids, and comparison with long-term limnological data. Quaternary International 113: 97-110. DOI: 10.1016/S1040-6182(03)00082-X.CrossrefGoogle Scholar

  • Marszelewski, W. (2005). Zmiany warunków abiotycznych w jeziorach Polski Północno-Wschodniej. Toruń: Wydawnictwo UMK.Google Scholar

  • Mills, K. & Ryves, D. (2012). Diatom-based models for inferring past water chemistry in western Ugandan crater lakes. Journal of Paleolimnology 48: 383-399. DOI: 10.1007/ s10933-012-9609-2.CrossrefGoogle Scholar

  • Morabito, G., Oggioni, A. & Austoni, M. (2012). Resource ratio and human impact: how diatom assemblages in Lake Maggiore responded to oligotrophication and climatic variability. Hydrobiologia 698: 47-60. DOI: 10.1007/ s10750-012-1094-0.CrossrefGoogle Scholar

  • Ohlendorf, C. & Sturm, M. (2008). A modified method for biogenic silica determination. Journal of Paleolimnology 39: 137-142. DOI: 10.1007/s10933-007-9100-7.CrossrefGoogle Scholar

  • Oksanen J., Blanchet, F.G., Friendly, M., Kindt, R, Legendre, P. et al. (2006). Vegan: community ecology package. http.cran.r-project.org/iGoogle Scholar

  • Özkundakci, D., Hamilton, D.P., Gibbs, M.M. (2011). Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia 661: 5-20. DOI: 10.1007/s10750-010-0358-9. Development Core Team. (2009). R version 2.9. 2. R Project for Statistical Computing Vienna, Austria.CrossrefGoogle Scholar

  • Reed, J.M. (1998). A diatom-conductivity transfer function for Spanish salt lakes. Journal of Paleolimnology 19: 399-416. DOI: 10.1023/A:1007934627134.CrossrefGoogle Scholar

  • Rühland, K.M., Paterson, A.M. & Smol, J.P. (2015). Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology. DOI: 10.1007/s10933-015-9837-3.CrossrefGoogle Scholar

  • Ryves, D.B., Clarke, A.L., Appleby, P.G. Amsinck, S.L, Jeppesen, E. et al. (2004). Reconstructing the salinity and environment of the Limfjord and Vejlerne Nature Reserve, Denmark, using a diatom model for brackish lakes and fjords. Canadian Journal of Fisheries and Aquatic Science 61: 1988-2006. DOI: 10.1139/F04-127.CrossrefGoogle Scholar

  • Saros, J. & Fritz, S.C. (2000). Nutrients as a link between ionic concentration/composition and diatom distributions in saline lakes. Journal of Paleolimnology 23: 449-453. DOI: 10.1023/A:1008186431492.CrossrefGoogle Scholar

  • Schrader, H. & Gersonde, R. (1978). Diatoms and silicoflagellates in the eight meters sections of the lower Pleistocene at Capo Rossello. Utrecht Micropaleontological Bulletin 17: 129-176.Google Scholar

  • Smith, V.H., Joye, S.B. & Howarth, R.W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography 51: 351-355.Google Scholar

  • Siuda, W., Kaliński, T, Kauppinen, E & Chróst, RJ. (2014). Eutrofïzacja południowej części kompleksu Wielkich Jezior Mazurskich wlatach 1977-2011. Technologia Wody 3: 48-62.Google Scholar

  • ter Braak, C.J.F. (1995). Ordination. In R.H.G. Jongman, CJ.F. ter Braak & O.F.R. van Tongeren (Eds.), Data analysis in community and landscape ecology. Second edition. (pp. 91-173). Cambridge: Cambridge University Press.Google Scholar

  • Tilman, D., Kilham, S.S. & Kilham, P. (1982). Phytoplankton community ecology: the role of limiting nutrients. Annual Review Ecology and Systematic 13: 349-372. DOI: 10.1146/annurev.es.13.110182.002025.CrossrefGoogle Scholar

  • Tylmann, W., Bonk, A., Goslar, T., Wulf, S. & Grosjean, M. (2016). Calibrating 210Pb dating results with varve chronology and independent chronostratigraphic markers: problems and implications. Quaternary Geochronology 32: 1-10. DOI: 10.1016/j.quageo.2015.11.004.CrossrefGoogle Scholar

  • Tylmann, W., Zolitschka, B., Enters, D. & Ohlendorf, C. (2013). Laminated lake sediments in northeast Poland: distribution, preconditions for formation and potential for paleoenvironmental investigation. Journal of Paleolimnology 50: 487-503. DOI: 10.1007/s10933-013-9741-7.CrossrefGoogle Scholar

  • Wacnik, A., Tylmann, W., Bonk, A., Goslar, T., Enters, et al. (2016). Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: combined pollen, geochemical and historical data. Vegetation History and Archaeobotany 25: 479-498. DOI: 10.1007/s00334-016-0565-z.CrossrefGoogle Scholar

  • Van Dam, H., Mertens, A. & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117-133. DOI: 10.1007/BF02334251.CrossrefGoogle Scholar

  • Zolitschka, B., Francus, P., Ojala, A.E.K. & Schimmelmann, A. (2015). Varves in lake sediments – a review. Quaternary Science Reviews 117: 1-41. DOI: 10.1016/j. quascirev.2015.03.019.CrossrefGoogle Scholar

About the article

Received: 2016-03-23

Accepted: 2016-06-10

Published Online: 2017-03-06

Published in Print: 2017-03-01


Citation Information: Oceanological and Hydrobiological Studies, Volume 46, Issue 1, Pages 1–17, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2017-0001.

Export Citation

© Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved..Get Permission

Comments (0)

Please log in or register to comment.
Log in