Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year


IMPACT FACTOR 2016: 0.544
5-year IMPACT FACTOR: 0.778

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.257
Source Normalized Impact per Paper (SNIP) 2016: 0.548

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 46, Issue 2 (Jun 2017)

Issues

Ecological assessment of water quality in the Kabul River, Pakistan, using statistical methods

Izaz Khuram / Sophia Barinova
  • Corresponding author
  • Institute of Evolution, University of Haifa, Mount Carmel, 199 Abba Khoushi Ave., Haifa 3498838, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nadeem Ahmad / Asad Ullah / Siraj Ud Din / Samin Jan / Muhammad Hamayun
Published Online: 2017-05-31 | DOI: https://doi.org/10.1515/ohs-2017-0015

Abstract

We identified 209 species of algae and cyanobacteria at 4 sites in the Kabul River. Green algae, diatoms, and charophytes dominated in the river, which reflects regional features of agricultural activity. Species richness and algal abundance increased down the river. The Water Quality Index characterizes the quality of water down the river as medium to bad. The index of saprobity S reflects Class III water quality. The Water Ecosystem Sustainability Index (WESI) shows contamination with nutrients. According to the River Pollution Index (RPI), waters in the river have low alkalinity and low salinity, and are contaminated with nutrients. Pearson coefficients showed that water temperature plays a major role in the total species richness distribution (0.93*) and in the green algae distribution (0.89*), while cyanobacteria were stimulated also by water salinity (0.91*). Stepwise regression analysis indicated water temperature as the major regional factor that determines riverine algal diversity. Surface plots and Canonical Correspondence Analysis (CCA) showed that salinity, nitrates, temperature, and Biochemical Oxygen Demand (BOD) can be defined as major factors affecting algal diversity. Dendrites mark the upper site of the Warsak Dam as the source of the community species diversity. Bioindication methods can give relevant and stable results of water quality and self-purification assessment that can be employed to monitor the regional water quality.

Key words: freshwater algae; river; water quality; statistical methods

References

  • Barinova, S. (2011). Algal diversity dynamics, ecological assessment, and monitoring in the river ecosystems of the eastern Mediterranean. New York, USA: Nova Science Publishers.Google Scholar

  • Barinova, S. & Krassilov, V.A. (2012). Algal diversity and bioindication of water resources in Israel. Int. J. Envir. Res. 1(2): 62-72.Google Scholar

  • Barinova, S., Liu, N., Ding, J., An, Y., Qin, X. et al. (2016a). Ecological assessment of water quality of the Songhua River upper reaches by algal communities. Acta Ecol. Sin. 36(3): 126-132. DOI: 10.1016/j.chnaes.2015.12.001.CrossrefGoogle Scholar

  • Barinova, S., Ali, N., Barkatullah & Sarim, F.M. (2013). Ecological Adaptation to Altitude of Algal Communities in the Swat Valley (Hindu Cush Mountains, Pakistan). Expert. Opin. Environ. Biol. 2(2): 1-15. DOI: 10.4172/2325-9655.1000104.CrossrefGoogle Scholar

  • Barinova, S., Tavassi, M., Glassman, H. & Nevo, E. (2010a). Algal indication of pollution in the Lower Jordan River, Israel. Appl. Ecol. Envir. Res. 8(1): 19-38.CrossrefGoogle Scholar

  • Barinova, S.S., Bragina, T.M., Nevo, E. (2009). Algal species diversity of arid region lakes in Kazakhstan and Israel. Comm. Ecol. 10(1): 7-16. DOI: 10.1556/ComEc.10.2009.1.2.CrossrefGoogle Scholar

  • Barinova, S., Khuram, I., Asadullah, Ahmad, N., Jan, S. et al. (2016b). How water quality in the Kabul River, Pakistan, can be determined with algal bio-indication. Advanced Studies in Biology 8(4): 151-171.Google Scholar

  • Barinova, S.S., Medvedeva, L.A. & Anisimova, O.V. (2006). Diversity of algal indicators in the environmental assessment. Tel Aviv, Israel: Pilies Studio. (In Russian).Google Scholar

  • Barinova, S.S., Tavassi, M. & Nevo, E. (2010b). Microscopic algae in monitoring of the Yarqon River (Central Israel). Saarbrücken, Germany: LAP Lambert Academic Publishing.Google Scholar

  • Barinova, S.S., Tsarenko, P.M. & Nevo, E. (2004). Algae of experimental pools on the Dead Sea coast, Israel. Isr. J. Plant Sci. 52(3): 265-275.Google Scholar

  • Bellinger, E.G. & Sigee, D.C. (2010). Freshwater algae: identification and use as bioindicators. Chichester, UK: John Wiley and Sons.Google Scholar

  • Bilous, O., Barinova, S. & Klochenko, P. (2012). Phytoplankton communities in ecological assessment of the Southern Bug River upper reaches (Ukraine). Ecohydr. Hydrob. 12(3): 211-230. DOI: 10.2478/v10104-012-0021-3.CrossrefGoogle Scholar

  • Collins, F.S. (1909). The green algae of North America. Tufts College Studies 2(3): 79-480.Google Scholar

  • Cox, E.J. (1996). Identification of freshwater diatoms from live material. London, Weinheim, New York, Tokyo, Melbourne, and Madras: Chapman & Hall.Google Scholar

  • Desikachary, T.V. (1959). Cyanophyta. New Dehli, India: Indian Council of Agriculture Research.Google Scholar

  • Edler, L. & Elbrächter, M. (2010). The Utermöhl method for quantitative phytoplankton analysis. In B. Karlson, C. Cusack & E. Bresnan (Eds.), Microscopic and molecular methods for quantitative phytoplankton analysis (pp. 13-20). Paris: UNESCO Publishing.Google Scholar

  • Government of Pakistan. (1998). Population census organization statistics division government of Pakistan. Islamabad Census Publication 68: 01-25.Google Scholar

  • Gresswell, R.K. & Huxley, A.J. (1965). Standard encyclopedia of the world’s rivers and lakes. New York, NY: G. P. Putnam’s Sons.Google Scholar

  • Khuram, I., Ahmad, N., Jan, S. & Barinova, S. (2014). Freshwater green algal biofouling of boats in the Kabul River, Pakistan. Oceanol. Hydrobiol. St. 43(4): 329-336. DOI: 10.2478/s13545-014-0150-y.Web of ScienceCrossrefGoogle Scholar

  • Klymiuk, V. & Barinova, S. (2016). Phytoplankton cell size in saline lakes. Res. J. Pharm. Biol. Chem. Sci. 7(1): 1077-1085.Google Scholar

  • Leghari, M.K., Waheed, S.B. & Leghorn, M.K. (2001). Ecological study of algal flora of Kunhar River of Pakistan. Pak. J. Bot. 33: 629-636.Google Scholar

  • Mitchell, K.M. & Stapp, W.B. (1992). Field manual for water quality monitoring. Dexter, Michigan: Thomson-Shore Printers.Google Scholar

  • Munir, M., Qureshi, R., Ilyas, M., Munazir, M. & Leghari, M.K. (2016). Systematics of Chroococcus from Pakistan. Pak. J. Bot. 48(1): 255-262.Google Scholar

  • Novakovsky, A.B. (2004). Abilities and base principles of program module “GRAPHS.” Scientific Reports of Komi Scientific Center, Ural Division of the Russian Academy of Sciences 27: 1-28.Google Scholar

  • Prescott, G.W. (1962). Algae of the Western great lakes area. Dubuque, Iowa USA: W.M.C. Brown Company Publisher.Google Scholar

  • Salim, K.M. & Khan, M.H. (1960). The Diatomales: the fresh water diatoms of Peshawar Valley. Peshawar, Pakistan: Dept. Botany, Peshawar Univ. Press.Google Scholar

  • Sebastian, S. (2016). Algal diversity of river Meenachil in Kerala, India. Ind. J. Appl. Res. 6(3): 203-204.Google Scholar

  • Sládeček, V. (1973). System of water quality from the biological point of view. Ergeb. Limnol. 7: 1-128.Google Scholar

  • Sládeček, V. (1986). Diatoms as indicators of organic pollution. Acta Hydroch. Hydrob. 14: 555-566.CrossrefGoogle Scholar

  • Sumita, M. (1986). A numerical water quality assessment of rivers in Hokuriku District using epilithic diatom assemblage in river bed as a biological indicator. (II) The values of RPId in surveyed rivers. Diatom. Jap. J. Diatomol. 2: 9-18.Google Scholar

  • Swift, E. (1967). Cleaning diatom frustules with ultraviolet radiation and peroxide. Phycologia 6(2): 161-163. DOI: 10.2216/i0031-8884-6-2-161.1.CrossrefGoogle Scholar

  • Ter Braak, C.J.F. & Šmilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (version 4.5). Ithaca: Microcomputer Power Press.Google Scholar

  • Tiffany, L.H. & Britton, M.E. (1952). The algae of Illinois. Chicago, U.S.A.: Chicago Univ. Press.Google Scholar

  • Transeau, E.N. (1951). The Zygnemataceae. Columbus: Ohio State University Press.Google Scholar

  • Ullah, Z., Khan, H., Waseem, A., Mahmood, Q. & Farooq U. (2013). Water quality assessment of the River Kabul at Peshawar, Pakistan: Industrial and urban wastewater impacts. Journal of Water Chemistry and Technology 35(4): 170-176.Google Scholar

  • Watanabe, T., Asai, K. & Houki, A. (1986). Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage - Diatom Assemblage Index (DAIpo). Sci. Tot. Envir. 55: 209-218.CrossrefGoogle Scholar

  • Wehr, J.D. (2002). Freshwater algae of North America: ecology and classification. Academic Press.Google Scholar

  • Wessa, P. (2016). Free statistics software. Office for Research Development and Education, version 1.1.23-r7, URL http://www.wessa.net/

  • Yousafzai, A.M., Khan, A.R., Shakoori, A.R. (2010). Pollution of large, subtropical rivers-river Kabul, Khyber-Pakhtun Khwa province, Pakistan: physico-chemical indicators. Pak. J. Zool. 42(6): 795-808.Google Scholar

About the article

Received: 2016-09-10

Accepted: 2016-11-10

Published Online: 2017-05-31

Published in Print: 2017-06-27


Citation Information: Oceanological and Hydrobiological Studies, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2017-0015.

Export Citation

© Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved.. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in