Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 46, Issue 2


Distribution and speciation of Fe, Mn, Zn, Cu, Pb and P in surface sediments of Lake Mariut, Egypt

Amaal M. Abdel-Satar
  • Corresponding author
  • National Institute of Oceanography and Fisheries (NIOF), Inland Water and Aquaculture Branch, 101 Kasr El Aini St., Cairo, Egypt
  • Chemistry Department, Faculty of Science, University of Hail, Hail, Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed H. Ali
  • National Institute of Oceanography and Fisheries (NIOF), Inland Water and Aquaculture Branch, 101 Kasr El Aini St., Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed E. Goher
  • National Institute of Oceanography and Fisheries (NIOF), Inland Water and Aquaculture Branch, 101 Kasr El Aini St., Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-31 | DOI: https://doi.org/10.1515/ohs-2017-0016


Lake Mariut is suffering from pollution as it receives industrial effluents and a mix of sewage from different drains, often lacking treatment systems. Sequential extraction procedures were applied for the speciation of heavy metals (Fe, Mn, Zn, Cu and Pb) and P in the lake sediment to evaluate their potential bioavailability. Total concentrations of metals had low values compared with the sediment quality guidelines. The chemical speciation data for Mn and Zn indicate a potential pollution level since the non-residual fractions contain up to 77.6 and 64.9% (respectively) of the total metal content. However, Fe, Cu and Pb are mostly linked to the inert fraction. Risk assessment of metals was carried out using the mobility factor, the contamination factor, the risk assessment code and the enrichment factor. All the analytical approaches indicated the accumulation of pollutants exceeding the adsorptive capacity of Lake Mariut sediments. The organic phosphorus fractions dominated in the sediment accounting for 51.4%, while the most abundant form of inorganic phosphorus was Ca-bound phosphorus. The rank order of P fractions was HCl-P > NaOH-P > BD-P > NH4Cl-P > Res-P. The decrease both in the dissolved oxygen level in the lake water and the Fe:P ratio in the lake sediment resulted in the high contribution of the phosphorus fractions to the overlying water.

Key words: heavy metals; chemical speciation; risk assessment; phosphorus; sediment; Lake Mariut


  • Abdel-Satar, A.M. & Goher, M.E. (2009). Nutrient status and phosphorus speciation of Manzalah Lake sediment, Egypt. Thalassia Sal. 32: 3-16.Google Scholar

  • Abdel-Satar, A.M. & Goher, M.E. (2015). Heavy metals fractionation and risk assessment in surface sediments of Qarun and Wadi El-Rayan Lakes, Egypt. Environ. Monit. Assess. 187: 346. DOI 10.1007/s10661-015-4592-5.Web of ScienceCrossrefGoogle Scholar

  • Abdel-Satar, A.M. & Sayed M.F. (2010). Sequential fractionation of phosphorus in sediments of El-Fayum Lakes-Egypt. Environ. Monit. Assess. 169(1-4):169-178.Web of ScienceCrossrefGoogle Scholar

  • Akcay, H., Oguz, A. & Karapire, C. (2003). Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments. Water Res. 37: 813-822.CrossrefGoogle Scholar

  • Anshumali & Ramanathan, A.L. (2007). Phosphorus fractionation in surficial sediments of Pandoh Lake, Lesser Himalaya, Himachal Pradesh, India. Appl. Geochem. 22: 1860-1871.Web of ScienceCrossrefGoogle Scholar

  • Aydin, F., Saydut, A. & Hamamci, C. (2009). A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment. J. Hazard. Mater. 186: 664-669.CrossrefWeb of ScienceGoogle Scholar

  • CCME (2001). Canadian Council of Ministers of the Environment. Canadian sediment quality guidelines for the protection of aquatic life: Introduction. Updated. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.Google Scholar

  • Donia, N. (2016). Water Quality Modelling of Northern Lakes Case Study (Egyptian Northern Lakes), In M. Nageeb Rashed (Ed.), Lake Sciences and Climate Change. In Tech, DOI: 10.5772/63526. Available from: http://www. intechopen.com/books/lake-sciences-and-climate-change/water-quality-modelling-of-northern-lakes-case-study-egyptian-northern-lakes-CrossrefGoogle Scholar

  • El-Rayis, O.E. (2005). Impact of man’s activities on a closed fishing-lake, Lake Mariut in Egypt, as a case study. Mitigation and Adaptation Strategies for Global Change 10: 145-157.Google Scholar

  • El-Shabrawy, G.M. & Goher M.E. (2011). Limnology of the Nile Delta Lakes. In P.E. Schmidt (Ed.). River Deltas: Types, Structures and Ecology (pp. 35-52). Nova Science Publishers, New York.Google Scholar

  • Fytianos, K. & Kotzakioti, A. (2005). Sequential fractionation of phosphorus in lake sediments of Northern Greece. Environ. Monit. Assess. 100: 191-200.CrossrefGoogle Scholar

  • Fytianos, K. & Lourandou, A. (2004). Chemical speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece. Environ. Int. 30: 11-17.CrossrefGoogle Scholar

  • Gao, X., Arthur Chen, C.T., Wang, G., Xue, Q., Tang, C. et al. (2010) Environmental status of Daya Bay surface sediments inferred from a sequential extraction technique. Estuar. Coast Shelf Sci. 86(3): 369-378.CrossrefGoogle Scholar

  • Gu, J., Salem, A & Chen, Z. (2013). Lagoons of the Nile delta, Egypt, heavy metal sink: With a special reference to the Yangtze estuary of China. Estuarine, Coastal and Shelf Science 117: 282-292.Google Scholar

  • Hudson-Edwards, K.A., Bristow, C.S., Cibin, G., Maso, G. & Peacock, C.L. (2014). Solid-phase phosphorus speciation in Saharan Bodélé Depression dusts and source sediments. Chem Geol 384: 16-26.Google Scholar

  • Huu, H.H., Rudy, S. & Damme, A.V. (2010). Distribution and contamination status of heavy metals in estuarine sediments near Cau Ong Harbor, Ha Long Bay, Vietnam. Geol. Belg. 13(1-2): 37-47.Google Scholar

  • Khairy, H.M., Shaltout, K.H., El-Sheekh, M.M. & Eassa, D.I. (2015). Algal Diversity of the Mediterranean Lakes in Egypt. In International Conference on Advances in Agricultural, Biological and Environmental Sciences (AABES-2015), 22-23 July 2015, London (UK).Google Scholar

  • Khalil, M.K., El Zokm, G.M., Fahmy, M.A., Said, T.O. & Shreadah, M.A. (2013). Geochemistry of some major and trace elements in sediments of Edku and Mariut lakes, North Egypt. World Applied Sciences Journal 24(3): 282-294.Google Scholar

  • Kljaković-Gašpić, Z., Bogner, D. & Ujević, I. (2009). Trace metals (Cd, Pb, Cu, Zn and Ni) in sediment of the submarine pit Dragon ear (Soline Bay, Rogoznica, Croatia). Environ. Geol. 58: 751-760.Web of ScienceCrossrefGoogle Scholar

  • Kumar R.N., Solanki, R. & Nirmal Kumar, J.I. (2012). Geochemistry of Sabarmati River and Kharicut Canal, Ahmedabad, Gujarat. IJES 2(4): DOI:10.6088/ijes.00202030074.CrossrefGoogle Scholar

  • Lesmes, L.E. (1996). Estudio de un factor de movilidad en geoquímica ambiental. Environ. Geochem. In Tropical Countries. 2nd International Symposium. Cartagena, Colombia.Google Scholar

  • Malecki, L.M., White, J.R. & Reddy, K.R. (2007). Soil biogeochemical characteristics influenced by alum application in a municipal waste water treatment wetland. J. Environ. Qual. 36(6): 1904-1913.CrossrefGoogle Scholar

  • Masoud, M.S., Fahmy, M.A., Ali, A.E. & Mohamed, E.A. (2011). Heavy metal speciation and their accumulation in sediments of Lake Burullus, Egypt. Afr. J. Environ. Sci. Technol. 5(4): 280-298.Google Scholar

  • Moore, F., Nematollahi, M.J. & Keshavarzi, B. (2015). Heavy metals fractionation in surface sediments of Gowatr bay-Iran. Environ. Monit. Assess. 187(1): 4117. DOI:10.1007/s10661-014-4117-7.CrossrefWeb of ScienceGoogle Scholar

  • Murphy, J. & Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-36.CrossrefGoogle Scholar

  • Nowrouzi, M. & Pourkhabbaz, A. (2014). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chem. Spec. Bioavailab. 26(2): 99-105.Web of ScienceCrossrefGoogle Scholar

  • Ogunfowokan, A.O., Oyekunle, J.A.O., Olutona, G.O., Atoyebi, A.O. & Lawal, A. (2013). Speciation study of heavy metals in water and sediments from Asunle River of the Obafemi Awolowo University, Ile-Ife, Nigeria. IJEP 3(3): 6-16.Google Scholar

  • Ong, M.C., Menier, D., Shazili, N.A.M. & Kamaruzzama, B.Y. (2013). Geochemical characteristics of heavy metals concentration in sediments of Quiberon Bay Waters, South Brittany, France. Orient. J. Chem. 29(1): 39-45.CrossrefGoogle Scholar

  • Paludan, C. & Jensen, H.S. (1995). Sequential extraction of phosphorus in freshwater wetland and lake sediment: significance of humic acids. Wetlands 15(4): 365-373.CrossrefGoogle Scholar

  • Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L. et al. (1985). Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. In T. D. Lakkas (Ed.), Heavy Metals in the Environment (pp. 454-456). Edinburgh: CEP Consultants.Google Scholar

  • Pettersson, K., Bostrőm, B. & Jacobsen, O. (1988). Phosphorus in Sediments – speciation and analysis. Hydrobiologia 170: 91-101.CrossrefGoogle Scholar

  • Rao, C.R.M., Sahuquilloa, A. & Sanchez, J.F.L. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Poll. 189: 291-333.Google Scholar

  • Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 46: 449-455.CrossrefGoogle Scholar

  • Ribeiro, D.C., Martins, G., Nogueira, R., Cruz, J.V. & Brito, A.G. (2008). Phosphorus fractionation in volcanic lake sediments (Azores-Portugal). Chemosphere 70: 1256-1263.CrossrefWeb of ScienceGoogle Scholar

  • Saad, M.A.H. (1980). Eutrophication of Lake Mariut, a heavily polluted lake in Egypt. Vienna: International Atomic Energy Agency.Google Scholar

  • Saad, M.A.H. (2003). Impact of diffuse pollution on the Socioeconomic development opportunities in the coastal Nile Delta Lakes, Diffuse Pollution Conference Dublin 2003.Google Scholar

  • Tessier, A., Campbell, P.G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7), 844-851.CrossrefGoogle Scholar

  • Topc, A. & Pulatsü, S. (2008). Phosphorus fractions in sediment profiles of the eutrophic Lake Mogan, Turkey. Fresenius Environ. Bull. 17(2): 164-172.Google Scholar

  • Turekian, K.K. & Wedepohl, K.H. (1961). Distribution of the elements in some major units of the earth’s crust. Bull. Geol. Soc. Am. 72(2): 175-192.CrossrefGoogle Scholar

  • Wang, L., Mei, Y., Li, Q., Hang, Z. & Zhoum, Y. (2013). Phosphorus speciation in wetland sediments of Zhujiang (Pearl) River Estuary, China. Chin. Geogr. Sci. 23(5): 574-583.CrossrefWeb of ScienceGoogle Scholar

  • Wang, S.R., Jin, X.C., Zhao, H.C., Zhou, X.N. & Wu, F.C. (2008). Effects of organic matter on phosphorus release kinetics in different trophic lake sediments and application of transition state theory. J. Environ. Manag. 88(4): 845-852.Google Scholar

  • Yahaya, M.I., Jacob, A.G., Agbendeh, Z.M., Akpan, G.P. & Kwasara, A.A. (2012). Seasonal potential toxic metals contents of Yauri river bottom sediments: North western Nigeria. J. Environ. Chem. Ecotoxicol. 4(12): 212-221.Google Scholar

  • Yuan, C.G., Shi, J.B., He, B., Liu, J.F., Liang, L.N. et al. (2004). Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ. Int. 30(6): 769-783.CrossrefGoogle Scholar

  • Zhang, R., Wang, L., Wu, F. & Song, B. (2013). Phosphorus speciation in the sediment profile of Lake Erhai, southwestern China: Fractionation and 31P NMR. J. Environ. Sci. 25(6): 1124-1130.Web of ScienceCrossrefGoogle Scholar

  • Zhou, Q., Gibson, C.E. & Zhu, Y. (2001). Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 42(2): 221-225.CrossrefGoogle Scholar

  • Zhu, G.W., Qin, B.Q., Zhang, L. & Luo, L.C. (2006). Geochemical forms of phosphorus in sediments of three large, shallow lakes in China. Pedosphere 16(6): 726-734.CrossrefGoogle Scholar

About the article

Received: 2016-08-31

Accepted: 2016-10-28

Published Online: 2017-05-31

Published in Print: 2017-06-27

Citation Information: Oceanological and Hydrobiological Studies, Volume 46, Issue 2, Pages 154–167, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2017-0016.

Export Citation

© Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved..Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Adam Choiński and Agnieszka Strzelczak
Water, 2018, Volume 10, Number 6, Page 795

Comments (0)

Please log in or register to comment.
Log in