Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year


IMPACT FACTOR 2016: 0.544
5-year IMPACT FACTOR: 0.778

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.257
Source Normalized Impact per Paper (SNIP) 2016: 0.548

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 46, Issue 2 (Jun 2017)

Issues

Charophytes in the estuarine Curonian Lagoon: Have the changes in diversity, abundance and distribution occurred since the late 1940s?

Zofija Sinkevičienė
  • Corresponding author
  • Laboratory of Flora and Geobotany, Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, 08406 Vilnius, Lithuania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martynas Bučas
  • Marine Science and Technology Center, Klaipėda University, H. Manto Str. 84, LT 92294, Klaipėda, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raimonda Ilginė
  • Marine Science and Technology Center, Klaipėda University, H. Manto Str. 84, LT 92294, Klaipėda, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diana Vaičiūtė
  • Marine Science and Technology Center, Klaipėda University, H. Manto Str. 84, LT 92294, Klaipėda, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marija Kataržytė
  • Marine Science and Technology Center, Klaipėda University, H. Manto Str. 84, LT 92294, Klaipėda, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jolita Petkuvienė
  • Marine Science and Technology Center, Klaipėda University, H. Manto Str. 84, LT 92294, Klaipėda, Lithuania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-31 | DOI: https://doi.org/10.1515/ohs-2017-0019

Abstract

The results of the recent (2014-2015) inventory and three historical datasets (1949-1959, 1960-1980 and 1997-2007) were analyzed in order to track the long-term changes of charophytes in the largest estuarine lagoon of the Baltic Sea. The present species composition of charophytes in the estuarine part of the Curonian Lagoon consisted of 7 species, including tolerant to salinity (Chara aspera, C. contraria, C. globularis and Nitellopsis obtusa) and typical brackish-water species (Chara baltica, C. canescens and Tolypella nidifica). The highest congruence of species was between the 1997-2007 and 2014-2015 datasets, which covered respectively eutrophication and post-eutrophication periods. The 1949-1959 dataset (closest to the reference conditions) differed by the absence of typical brackish-water species. The 1960-1980 dataset (the major period of eutrophication) was relatively poor in study sites and species. During the last 6 decades, only tolerant to salinity freshwater species were constant and abundant; only Nitella mucronata can be considered as extinct. Recently, C. contraria became dominant and widespread. The changes in the charophyte species composition, abundance and distribution can be explained by different intensity of surveys and/or density of study sites, but also by the increased exposure to brackish waters since 1980s and/or recently reduced effect of eutrophication.

Key words: macrophytes; Baltic Sea; long-term changes; eutrophication

References

  • Aplinkos Apsaugos Agentūra. (2014, May). Ecological status of the transitional and coastal waters in 2014. Retrieved July 14, 2016, from http://vanduo.gamta.lt/files/EKOLOGINE%20 CHEMIN%C4%96%20B%C5%AAKL%C4%96%202014-05-221432297326713.pdf. (In Lithuanian).

  • Appelgren, K. & Mattila, J. (2005). Variation in vegetation communities in shallow bays of the northern Baltic Sea. Aquatic Botany 83: 1-13. DOI: 10.1016/j.aquabot.2005.05.001.CrossrefGoogle Scholar

  • Appelgren, K., Snickars, M. & Mattila, J. (2004). Chara connivens Saltzm. Ex. A. Braun 1835 found in the Åland archipelago – a new species to Finland. Memoranda Soc. Fauna Flora Fennica 80: 11-13.Google Scholar

  • Bivand, R., Lewin-Koh, N., Pebesma, E., Archer, E., Baddeley, A. et al. (2015). Maptools: Tools for Reading and Handling Spatial Objects. R package version 0.8–36. Retrieved July 14, 2016, from http://CRAN.R-project.org/package=maptools.

  • Bivand, R., Rundel, C. (2015). rgeos: Interface to Geometry Engine – Open Source (GEOS). R package version 0.3-11. Retrieved July 14, 2016, from http://CRAN.R-project.org/package=rgeos.Google Scholar

  • Blindow, I. (1992): Decline of charophytes during eutrophication: a comparison to angiosperms. Freshwater Biology 28: 9-14. DOI: 10.1111/j.1365-2427.1992.tb00557.x.CrossrefGoogle Scholar

  • Blindow, I. (2000). Distribution of Charophytes along the Swedish Coast in Relation to Salinity and Eutrophication. Internat. Rev. Hydrobiol. 85: 707-717. DOI: 10.1002/1522-2632(200011)85:5/6<707::AID-IROH707 >3.0.CO;2-W.CrossrefGoogle Scholar

  • Blindow, I. & Koistinen, M. (2003). Determination key for charophytes in the Baltic Sea. In H. Schubert & I. Blindow (Eds.), Charophytes of the Baltic Sea. The Baltic Marine Biologists Publication No. 19 (pp. 27-36). Ruggell: A.R.G. Gantner Verlag.Google Scholar

  • Blümel, C. (2003). Chara baltica Bruzelius 1824. In H. Schubert & I. Blindow (Eds.), Charophyte of the Baltic Sea. The Baltic Marine Biologists Publication No. 19 (pp. 53-63). Ruggell: A.R.G. Gantner Verlag.Google Scholar

  • Brzeska, P., Woźniczka, A., Pełechaty & M. Blindow, I. (2015). New records of Chara connivens P. Salzmann ex A. Braun 1835 – an extremely rare and protected species in Polish brackish waters. Acta Societatis Botanicorum Poloniae 84(1): 143-146. DOI: 10.5586/asbp.2015.010.CrossrefGoogle Scholar

  • Bui, R., Buliung, R.N. & Remmel, T.K. (2012). aspace: A collection of functions for estimating centrographic statistics and computational geometries for spatial point patterns. R package version 3.2. Retrieved July 14, 2016, from http://CRAN.R-project.org/package=aspace.

  • Dekere, Z. (2003). Chara contraria A. Braun ex Kütz. 1845. In H. Schubert & I. Blindow (Eds.), Charophyte of the Baltic Sea. The Baltic Marine Biologists Publication No 19 (pp. 89-94). Ruggell: A.R.G. Gantner Verlag.Google Scholar

  • Dugdale, T.M., Hicks, B.J., de Winton, M. & Taumoepeau, A. (2006). Fish exclosures versus intensive fishing to restore charophytes in a shallow New Zealand lake. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 193-202. DOI: 10.1002/aqc.711.CrossrefGoogle Scholar

  • Ferrarin, Ch., Razinkovas, A., Gulbinskas, S., Umgiesser, G. & Bliūdžiutė, L. (2008). Hydraulic regime based zonation scheme of the Curonian Lagoon. Hydrobiologia 611: 133-146. DOI: 10.1007/s10750-008-9454-5.CrossrefGoogle Scholar

  • European Parliament, Council of the European Union (1992, May). Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Communities L 206, 22/07/1992: 0007–0050. Retrieved July 14, 2016, from EUR-Lex: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.1992.206.01.0001.01. ENG&toc=OJ:L:1992:206:TOC.

  • European Parliament, Council of the European Union (2000, December). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327, 22/12/2000: 0001–0073. Retrieved July 14, 2016, from EUR-Lex: http://www.glassforeurope.com/images/cont/133_26204_file.pdf.

  • Gailiušis, B., Kriaučiūnienė, J. & Kovalenkovienė, M. (2005). Studies on permeability of the Klaipėda Strait. In Environmental engineering: the 6th international conference, 26-27 May 2005 (pp. 356-361). Vilnius, Lithuania: Vilnius Gediminas Technical University Press ”Technika”.Google Scholar

  • Hansen, J.P. & Snickars, M. (2014). Applying macrophyte community indicators to assess anthropogenic pressures on shallow soft bottoms. Hydrobiologia 738: 171-189. DOI: 10.1007/s10750-014-1928-z.CrossrefGoogle Scholar

  • HELCOM (2009). Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region: Executive Summary. Balt. Sea Environ. Proc. 115A: 1-148. Retrieved July 14, 2016, from Baltic Sea Environment Proceedings: http://www.helcom.fi/Lists/Publications/BSEP143.pdf.

  • Hijmans, R.J. (2015). Geosphere: Spherical Trigonometry. R package version 1.3-13 [computer software]. Retrieved July 14, 2016, from http://CRAN.R-project.org/package=geosphere.

  • Hollerbach, M.M. & Krasavina, L.K. (1983). Manual for determination of freshwater algae in USSR. Charophytes. Leningrad: Nauka. (In Russian).Google Scholar

  • Hosper, H. (1994). An ecosystem-based approach for the restoration of shallow lakes in the Netherlands. Lake and Reservoir management 9: 82.Google Scholar

  • Jakimavičius, D. & Kovalenkovienė, M. (2010). Long-term water balance of the Curonian Lagoon in the context of anthropogenic factors and climate change. Baltica 23(1): 33-46.Google Scholar

  • Jurevičius, R. (1959). Hydrochemical characteristic of the Curonian Lagoon. In K. Jankevičius, I. Gasiūnas, A. Gediminas, V. Gudelis, A. Kublickas et al. (Eds.), The Curonian Lagoon (Complex research results by Biological Institute of Lithuanian Academy of sciences) (pp. 69-108). Vilnius (In Russian, German and Lithuanian summary).Google Scholar

  • Kelpšaitė, L. & Dailidienė, I. (2011). Influence of wind wave climate change to the coastal processes in the eastern part of the Baltic Proper. Journal of Coastal Research, SI 64: 220-224.Google Scholar

  • Kennish, M.J. & Paerl, H.W. (2010). Coastal lagoons: critical habitats of environmental change. In M.J. Kennish & H.W. Paerl (Eds.), Coastal lagoons: critical habitats of environmental change (pp. 1-16). Boca Raton, FL: CRC Press Taylor & Francis Group.Google Scholar

  • Kent, M. & Coker, P. (1992). Vegetation description and analysis. London: Belhaven Press.Google Scholar

  • Konietschke, F., Placzek, M., Schaarschmidt, F. & Hothorn, L.A. (2015). nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals. J. Stat. Softw., 64(9), 1-17. DOI: 10.18637/jss.v064.i09.Google Scholar

  • Kovtun, A., Torn, K. & Kotta, J. (2009). Long-term changes in a northern Baltic macrophyte community. Estonian Journal of Ecology 58(4): 270-285. DOI: 10.3176/eco.2009.4.03.CrossrefGoogle Scholar

  • Kovtun, A., Torn, K., Martin, G., Kullas, T., Kotta, J. et al. (2011). Influence of abiotic environmental conditions on spatial distribution of charophytes in the coastal waters of West Estonian Archipelago, Baltic Sea. Journal of Coastal Research SI64: 412-416.Google Scholar

  • Krause, W. (1997). Charales (Charophyceae). Freshwater flora of Central Europe (Volume 18). Jena: Gustav Fischer. (In German).Google Scholar

  • Krevs, A., Koreiviene, J., Paskauskas, R. & Sulijiene R. (2007). Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period. Transitional Waters Bulletin 1: 17-26. DOI: 10.1285/i1825229Xv1n1p17.CrossrefGoogle Scholar

  • Kufel, L. & Kufel, I. (2002). Chara beds acting as nutrient sinks in shallow lakes - a review. Aquatic Botany 72: 249-260. DOI: 10.1016/S0304-3770(01)00204-2.CrossrefGoogle Scholar

  • Lekavičius, A. (1989). Manual for determination of plants. Vilnius: Mokslas. (In Lithuanian).Google Scholar

  • Luther, H. (1979). Chara connivens in the Baltic Sea area. Annales Botanici Fennici 16: 141-150.Google Scholar

  • Martin, G., Torn, K., Blindow, I., Schubert, H., Munsterhjelm, R. et al. (2003). Introduction to charophytes. In H. Schubert & I. Blindow (Eds.), Charophytes of the Baltic Sea. The Baltic Marine Biologists Publication No. 19 (pp. 3-14). Ruggell: A.R.G. Gantner Verlag.Google Scholar

  • Mathieson, A.C. & Nienhuis, P.H. (Eds.) (1991). Intertidal and Littoral Ecosystems. Elsevier Science Publication, Amsterdam.Google Scholar

  • Minkevičius, A. & Pipinys, J. (1959). Review of flora and vegetation of the Curonian Lagoon. In K. Jankevičius, I. Gasiūnas, A. Gediminas, V. Gudelis, A. Kublickas et. al. (Eds.), The Curonian Lagoon (Complex research results by Biological Institute of Lithuanian Academy of Sciences) (pp. 109-137). Vilnius (In Russian, German and Lithuanian summary).Google Scholar

  • Nielsen, R. (2003). Chara aspera Villd. 1809. In H. Schubert & I. Blindow (Eds.), Charophyte of the Baltic Sea. The Baltic Marine Biologists Publication No. 19 (pp. 42-52). Ruggell: A.R.G. Gantner Verlag.Google Scholar

  • Pardo, I., Poikane, S. & Bonne, W. (2011). JRC scientific and technical reports. Revision of the consistency in Reference Criteria application in the phase I of the European Intercalibration exercise. Luxembourg: Office for Official publications of the European Communities. DOI: 10.2788/27631.CrossrefGoogle Scholar

  • Pitkänen, H., Peuraniemi, M., Westerbom, M., Kilpi, M. & Numers, M.V. (2013). Long-term changes in distribution and frequency of aquatic vascular plants and charophytes in an estuary in the Baltic Sea. Annales Botanici Fennici 50 (SA): 1-54. DOI: 10.5735/085.050.701.CrossrefGoogle Scholar

  • Pliński, M., Kreńska, B. & Wnorowski, T. (1978). Floristic relations and biomass of vascular plants of the Vistula Lagoon. Stud. Mat. Oceanol. 21: 161-96. (In Polish).Google Scholar

  • Plokštienė, D. (2002). The vegetation structure and peculiarities of its development in the Curonian Lagoon. Jūra ir aplinka 2(7): 33-41. (In Lithuanian).Google Scholar

  • Romanov, R.E. (2015). Chara inconnexa Allen (Streptophyta: Charales) and taxonomic ambiguities associated with subgymnophyllous species close to C. contraria A. Braun ex Kütz. s.str. Cryptogamie, Algologie 36(4): 371-388. DOI: 10.7872/crya/v36.iss4.2015.371.CrossrefGoogle Scholar

  • Romanov, R.E. & Volodina, A.A. (2015). State of knowledge of charophytes (Streptophyta: Charophyceae, Charales) in the Kaliningrad oblast (Russia). In Problems of taxonomy and geography of aquatic plants: proceedings of International conference, 21-24 October 2015 (pp. 66-67). Yaroslavl: Filigran. (In Russian).Google Scholar

  • Rönnberg, C. & Bonsdorff, E. (2004). Baltic Sea eutrophication: area-specific ecological consequences. Hydrobiologia 514: 227-241. DOI: 10.1023/B:HYDR.0000019238.84989.7f.CrossrefGoogle Scholar

  • Rosqvist, K., Mattilaa, J., Sandström, A., Snickars, M. & Westerbom, M. (2010). Regime shifts in vegetation composition of Baltic Sea coastal lagoons. Aquatic Botany 93: 39-46. DOI: 10.1016/j.aquabot.2010.03.002.CrossrefGoogle Scholar

  • Schmieder, K., Werner, S. & Bauer, H.G. (2006). Submersed macrophytes as a food source for wintering waterbirds at Lake Constance. Aquatic Botany 84: 245-250. DOI: 10.1016/j.aquabot.2005.09.006.CrossrefGoogle Scholar

  • Schubert, H. & Blindow I. (Eds.) (2003). Charophyte of the Baltic Sea. The Baltic Marine Biologists Publication No. 19. Ruggell: A.R.G. Gantner Verlag.Google Scholar

  • Schubert, H., Schubert, M. & Krause, J.C. (2007). Reconstruction of XIXth century submerged vegetation of coastal lagoons of the German Baltic Sea. Sea and Environment 1(14): 16-27.Google Scholar

  • Selig, U., Eggert, A., Schories, D., Schubert, M., Blümel, M. et al. (2007a). Ecological classification of macroalgae and angiosperm communities of inner coastal waters in the Southern Baltic Sea. Ecological Indicator 7: 665-678. DOI: 10.1016/j.ecolind.2006.07.006.CrossrefGoogle Scholar

  • Selig, U., Schubert, M., Eggert, A., Steinhardt, T., Sagert, S. et al. (2007b). The influence of sediments on soft bottom vegetation in inner coastal waters of Mecklenburg-Vorpommern (Germany). Estuarine, Coastal and Shelf Science 71(1-2): 241-249. DOI: 10.1016/j.ecss.2006.07.015.CrossrefGoogle Scholar

  • Selig, U., Steinnhardt, T. & Schubert H. (2009). Interannual variability of submerged vegetation in a brackish coastal lagoon on the southern Baltic Sea. Ekológia (Slovak Republic) 28(4): 412-423. DOI: 10.4149/ekol_2009_04_412.CrossrefGoogle Scholar

  • Sinkevičienė, Z. (2004). Charophyta of the Curonian Lagoon. Botanica Lithuanica 10(1): 33-57.Google Scholar

  • Sinkevičienė, Z. (2007). Charophyta. In V. Rašomavičius (Ed.), Red Data book of Lithuania (pp. 278-288). Kaunas: Lututė. (In Lithuanian).Google Scholar

  • Snoeijs, P. & Johansson, G. (2003). Swedish Marine and Brackish-Water Algae (5th ed.). Uppsala University, Uppsala. Retrieved May 16, 2010, from Institutionen för biologisk grundutbildning (IBG), Uppsala University www.ibg. uu.se/1BL170.

  • Steinhardt, T. & Selig, U. (2007). Spatial distribution patterns and relationship between recent vegetation and diaspore bank of a brackish coastal lagoon on the southern Baltic Sea. Estuarine, Coastal and Shelf Science 74(1): 205-214. DOI: 10.1016/j.ecss.2007.04.004.CrossrefGoogle Scholar

  • Steinhardt, T. & Selig, U. (2008). Comparison of recent vegetation and diaspore banks along abiotic gradients in brackish coastal lagoons. Aquatic Botany 91(1): 20-26. DOI: 10.1016/j.aquabot.2009.01.004.CrossrefGoogle Scholar

  • Steinhardt, T. & Selig, U. (2011). Influence of salinity and sediment resuspension on macrophyte germination in coastal lakes. Journal of limnology 70(1): 11-20. DOI: 10.3274/JL11-70-1-03.CrossrefGoogle Scholar

  • Steinhardt, T., Karez, R., Weselig, U. & Schubert, H. (2009). The German procedure for the assessment of ecological status in relation to the biological quality element “Macroalgae & Angiosperms” pursuant to the European Water Framework Directive (WFD) for inner coastal waters of the Baltic Sea. Rostock. Meeresbiolog. Beitr. 22: 7-42.Google Scholar

  • Torn, K. & Martin, G. (2003). Chara connivens Salzm. ex A.Braun 1835. In H. Schubert & I. Blindow (Eds.), Charophyte of the Baltic Sea. The Baltic Marine Biologists Publication No. 19. (pp.82-88). Rugell: A.R.G. Gantner Verlag.Google Scholar

  • Torn, K., Martin, G., Kukk, H. & Trei, T. (2004). Distribution of charophyte species in Estonian coastal waters (NE Baltic Sea). Scientia Marina 68: 129-136. DOI: 10.3989/scimar.2004.68s1129.CrossrefGoogle Scholar

  • Torn, K., Martin, G. & Rostin L. (2014). Testing and development of different metrics and indexes describing submerged aquatic vegetation for the assessment of the ecological status of semi-enclosed coastal water bodies in the NE Baltic Sea. Estonian Journal of Ecology 63(4): 262-281. DOI: 10.3176/eco.2014.4.05.CrossrefGoogle Scholar

  • Torn, K., Kovtun-Kante, A., Herkül, K., Martin, G. & Mäemets, H. (2015). Distribution and predictive occurrence model of charophytes in Estonian waters. Aquatic Botany 120: 142-149. DOI: 10.1016/j.aquabot.2014.05.005.CrossrefGoogle Scholar

  • Trainauskaitė, I. (1978). Aquatic vegetation of the Curonian Lagoon. In K. Jankevičius (Ed.), Physiological and biochemical terms of planktonic organisms development in the northern part of the Curonian Lagoon (pp. 61-73). Vilnius: Vaga. (In Russian)Google Scholar

  • Urbaniak, J. (2003). Nitellopsis obtusa (Desv. in Loisel.) J. Groves 1919. In H. Schubert & I. Blindow (Eds.), Charophyte of the Baltic Sea. The Baltic Marine Biologists Publication No. 19. (pp. 99-106). Rugell: A.R.G. Gantner Verlag.Google Scholar

  • Vaitkevičienė, O., Vaitkevičius, K. (1978). Hydrochemical conditions. In A. Rainys (Ed.), The Curonian Lagoon: Hydrological conditions. (Volume 2). (pp. 81-111). Vilnius: Mokslas. (In Lithuanian).Google Scholar

  • Van den Berg, M.S., Coops, H., Simons, J. & de Keizer, A. (1998). Competition between Chara aspera and Potamogeton pectinatus as a function of temperature and light. Aquatic Botany 60(3): 241-250. DOI: 10.1016/S0304-3770(97)00099-5.CrossrefGoogle Scholar

  • Zemlys, P., Ferrarin, C., Umgiesser, G., Gulbinskas, S. & Bellafiore, D. (2013). Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipeda Strait using finite element hydrodynamic model. Ocean Science 9(3): 573-584. DOI: 10.5194/os-9-573-2013.CrossrefGoogle Scholar

  • Zilius, M., Bartoli, M., Bresciani, M., Katarzyte, M., Ruginis, T. et al. (2014). Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuaries and coasts 37(3): 680-694. DOI: 10.1007/s12237-013-9717-x.CrossrefGoogle Scholar

  • Žaromskis, R. (1996). Ocean, Seas, Estuaries. Vilnius, Debesija. (In Lithuanian).Google Scholar

About the article

Received: 2016-07-20

Accepted: 2016-10-21

Published Online: 2017-05-31

Published in Print: 2017-06-27


Citation Information: Oceanological and Hydrobiological Studies, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2017-0019.

Export Citation

© Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved.. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in