Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

See all formats and pricing
More options …
Volume 46, Issue 2


Analysis of zooplankton assemblages from man-made ditches in relation to current velocity

Robert Czerniawski / Łukasz Sługocki
Published Online: 2017-05-31 | DOI: https://doi.org/10.1515/ohs-2017-0020


Because of the slow current velocity, man-made ditches may create distinct physical and ecological conditions that are suitable for the growth of zooplankton populations. However, the influence of drainage ditches on zooplankton communities has not been studied yet. This study aims to answer the following questions: i) Are man-made ditches a rich source of zooplankton? ii) What current velocity value leads to abundant zooplankton in man-made ditches? iii) Do zooplankton communities differ between man-made ditches and connected natural streams? In man-made drainage ditches with a water current lower than 0.1 m s-1, the abundance of zooplankton was greater than in the majority of streams. Sometimes this level of abundance was equivalent to the densities of zooplankton in lakes or dammed reservoirs. The presence of zooplankton in man-made ditches may be of great importance to the establishment of food webs, particularly during periods of high water levels or heavy rainfall, both of which may accelerate the water current, causing the dispersion of zooplankton along the ditches and into natural streams.

Key words: stream ecology; Rotifera; Copepoda; Cladocera; biodiversity; land reclamation


  • Allan, J.D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Syst. 35: 257-284. DOI: 10.1146/annurev.ecolsys.35.120202.300000.CrossrefGoogle Scholar

  • Basu, B.K. & Pick F.R. (1997) Phytoplankton and zooplankton development in a lowland, temperate river. J. Plankton Res. 19: 237-253.CrossrefGoogle Scholar

  • Bednarek, A., Szklarek, S. & Zalewski, M. (2014). Nitrogen pollution removal from areas of intensive farming - comparison of various denitrification biotechnologies. Ecohydrol. Hydrobiol. 14: 132-141. DOI: 10.1016/j.ecohyd.2014.01.005.CrossrefGoogle Scholar

  • Błędzki, L.A. (2007). Method for comparing species richness and species diversity. Part I. Bioskop. 1: 18-22. (In Polish).Google Scholar

  • Boothby, J. (2003) Tackling degradation of a seminatural landscape: options and evaluations. Land Degrad. Dev. 14: 227-243. DOI: 10.1002/ldr.551.CrossrefGoogle Scholar

  • Campbell, C.E. (2002). Rainfall events and downstream drift of microcrustacean zooplankton in a Newfoundland boreal stream. Can. J. Zool. 80: 997-100. DOI: 10.1139/z02-077.CrossrefGoogle Scholar

  • Chang, K.H., Doi, H., Imai, H. Gunji, F. & Nakano, S.I. (2008). Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory. Limnology 9: 125-133. DOI: org/10.1007/s10201-008-0244-6.Google Scholar

  • Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H. et al. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45-67.CrossrefGoogle Scholar

  • Colwell, R.K. (2013). EstimateS, Version 9.1: Statistical Estimation of Species Richness and Shared Species from Samples. Consultado en: http://viceroy.eeb.uconn.edu/estimates.Google Scholar

  • Czerniawski, R. (2012). Spatial pattern of potamozooplankton community of the slowly flowing fishless stream in relation to abiotic and biotic factors. Pol. J. Ecol. 60: 323-338.Google Scholar

  • Czerniawski, R. (2013). Zooplankton community changes between forest and meadow sections in small headwater streams, NW Poland. Biologia 68: 448-458. DOI: 10.2478/s11756-013-0170-x.CrossrefGoogle Scholar

  • Czerniawski, R. & Domagała, J. (2010). Zooplankton communities of two lake outlets in relation to abiotic factors. Cent. Eur. J. Biol. 5: 240-255. DOI: 10.2478/s11535-009-0062-9.CrossrefGoogle Scholar

  • Czerniawski, R. & Domagała, J. (2013). Reduction of zooplankton communities in small lake outlets in relation to abiotic and biotic factors. Oceanol. Hydrobiol. St. 42: 123-131. DOI: 10.2478/s13545-013-0065-z.CrossrefGoogle Scholar

  • Czerniawski, R. & Domagała, J. (2014). Small dams profoundly alter the spatial and temporal composition of zooplankton communities in running waters. Int. Rev. Hydrobiol. 99: 300-311. DOI: 10.1002/iroh.201301674.CrossrefGoogle Scholar

  • Czerniawski, R. & Pilecka-Rapacz, M. (2011). Summer zooplankton in small rivers in relation to selected conditions. Cent. Eur. J. Biol. 6: 659-674. DOI: 10.2478/s11535-011-0024-x.CrossrefGoogle Scholar

  • Czerniawski, R., Pilecka-Rapacz, M. & Domagała, J. (2013). Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Cent. Eur. J. Biol. 8: 18-29. DOI: 10.2478/s11535-012-0110-8.CrossrefGoogle Scholar

  • De Bie, T., Declerck, S., Martens, K., De Meeste, L. & Brendonck, L. (2008). A comparative analysis of cladoceran communities from different water body types: patterns in community composition and diversity. Hydrobiologia 597: 19-27. DOI: 10.1007/s10750-007-9222-y.CrossrefGoogle Scholar

  • Declerck, S., De Bie, T., Ercken, D., Hampel, H., Schrijvers, S. et al. (2006). Ecological characteristics of small farmland ponds: associations with land use practices at multiple spatial scales. Biol. Conserv. 131: 523-532.CrossrefGoogle Scholar

  • Dussart, B. & Defaye, D. (2006). World Directory of Crustacea Copepoda of Inland Waters. II Cyclopiformes. Leiden: Backhuys Publishers.Google Scholar

  • Ejsmont-Karabin, J., Węgleńska, T. & Wiśniewski, R.J. (1993). The effect of water flow rate on zooplankton and its role in phosphorus cycling in small impoundments. Water Sci. Technol. 28: 35-43.Google Scholar

  • Ejsmont-Karabin, J. & Kruk, M. (1998). Effects of contrasting land use on free-swimming rotifer communities of streams in Masurian Lake District, Poland. Hydrobiologia 387/388: 241-249.Google Scholar

  • Holst, H., Zimmermann-Timm, H. & Kausch, H. (2002). Longitudinal and transverse distribution of plankton rotifers in the potamal of the River Elbe (Germany) during late summer. Int. Rev. Hydrobiol. 87: 267-280. DOI: 10.1002/1522-2632(200205)87:2/3<267::AID-IROH267>3.0.CO;2-F.CrossrefGoogle Scholar

  • Gołdyn, R. & Kowalczewska-Madura, K. (2008). Interactions between phytoplankton and zooplankton in the hypertrophic Swarzędzkie Lake in western Poland. J. Plankton Res. 30: 33-42. DOI: 10.1093/plankt/fbm086.CrossrefGoogle Scholar

  • Grabowska, M., Ejsmont-Karabin, J. & Karpowicz, M. (2013). Reservoir-river relationships in lowland, shallow, eutrophic systems: an impact of zooplankton from hypertrophic reservoir on river zooplankton. Pol. J. Ecol. 61: 759-768.Google Scholar

  • Hunke, P., Mueller, E.N., Schröder, B. & Zeilhofer, P. (2015). The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology DOI: 10.1002/eco.1573.Google Scholar

  • Jack, J.D. & Thorp, J.H. (2002). Impacts of fish predation on an Ohio River zooplankton community. J. Plankton Res. 24: 119-127. DOI: 10.1093/plankt/24.2.119.CrossrefGoogle Scholar

  • Jeppesen, E., Nõges, P., Davidson, T.A., Haberman, J., Nõges, T. et al. (2011). Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279-297. DOI: 10.1007/s10750-011-0831-0.CrossrefGoogle Scholar

  • Kamarainen, A.M., Rowland, F.E., Biggs, R. & Carpenter, S.R. (2008). Zooplankton and the total phosphorus-chlorophyll a relationship: hierarchical Bayesian analysis of measurement error. Can. J. Fish. Aquat. Sci. 65: 2644-2655. DOI:10.1139/F08-161.CrossrefGoogle Scholar

  • Karpowicz, M. (2014). Influence of eutrophic lowland reservoir on crustacean zooplankton assemblages in river valley oxbow lakes. Pol. J. Environ. St. 23: 2055-2061.Google Scholar

  • Kiryluk, A. (2010). Species diversity of the flora in melioration ditches in dry-ground forest and post-bog meadow habitats. Teka Kom. Ochr. Kształt. Środ. Przyr. 7: 130-137.Google Scholar

  • Kirulyk, A. (2013). Influence of maintenance work on the plant of species in meliorated ditches on the post-bog meadows object. Eng. Environ. Sci. 62: 374-381.Google Scholar

  • Krylov, A.V. (2002). Activity of beavers as an ecological factor affecting the zooplankton of small rivers. Rus. J. Ecol. 33: 349-356.Google Scholar

  • Krylov, A.V. (2008). Impact of the activities of beaver on the zooplankton of a piedmont river (Mongolia). Inland Wat. Biol. 1: 73-75.Google Scholar

  • Lair, N. (2006). A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Res. Appl. 22: 567-593. DOI: 10.1002/rra.923.CrossrefGoogle Scholar

  • Lemly, A.D., Finger, S.E. & Nelson, M.K. (1993). Sources and impacts of irrigation drainwater contaminants in arid wetlands. Environ. Toxicol. Chem. 12: 2265-2279.CrossrefGoogle Scholar

  • Lévesque, S., Beisner, B.E. & Peres-Neto, P.R. (2010). Meso-scale distributions of lake zooplankton reveal spatially and temporally varying trophic cascades. J. Plankton Res. 32: 1369-1384. DOI: 10.1093/plankt/fbq064.CrossrefGoogle Scholar

  • Mauritzen, M., Bergers, P.J.M., Andreassen, H.P., Bussink, H. & Barendse, R. (1999). Root vole movement patterns: do ditches function as habitat corridors? J. Appl. Ecol. 36: 409-421.CrossrefGoogle Scholar

  • Nielsen, D.L., Podnar, K., Watts, R.J. & Wilson, A.L. (2013). Empirical evidence linking increased hydrologic stability with decreased biotic diversity within wetlands. Hydrobiologia 708: 81-96. DOI: 10.1007/s10750-011-0989-5.CrossrefGoogle Scholar

  • Nogrady, T., Wallace, R.L. & Snell, T.W. (1993). Rotifera. In H.J. Dumont (Ed.), Biology, Ecology and Systematics. Vol. 1, Guides to the Identification of the Microinvertebrates of the Continental Waters of the World (pp. 1-142). The Hague: SPB Academic Publishers.Google Scholar

  • Obolewski, K. (2011). Macrozoobenthos patterns along environmental gradients and hydrological connectivity of oxbow lakes. Ecol. Eng. 37: 796-805. DOI: 10.1016/j. ecoleng.2010.06.037.CrossrefGoogle Scholar

  • Oksanen, J. (2009). Multivariate analysis of ecological communities in R: vegan tutorial. Available from: http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf, pp. 42.Google Scholar

  • Radwan, S. (2004). Rotifers. Łódź: Uniwersytet Łódzki. (In Polish).Google Scholar

  • Reynolds, C.S. (2000). Hydroecology of river plankton: the role of variability in channel flow. Hydrol. Process. 14: 3119-3132.CrossrefGoogle Scholar

  • Richardson, W.B. (1992). Microcrustacea in flowing water: experimental analysis of washout times and a field test. Freshwat. Biol. 28: 217-230.CrossrefGoogle Scholar

  • Robertson, A.L. (2000). Lotic meiofaunal community dynamics: colonisation, resilience and persistence in a spatially and temporally heterogeneous environment. Freshwat. Biol. 44: 135-147. DOI: 10.1046/j.1365-2761.2000.00595.x.CrossrefGoogle Scholar

  • Rybak, J.I. & Błędzki, L.A. (2010). Planktonic crustaceans of freshwaters. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego. (In Polish).Google Scholar

  • Rzoska, J. (1976). Zooplankton of the Nile system. In J. Rzoska (Ed.), The Nile, biology of an ancient river (pp. 333-343). The Hague: Junk.Google Scholar

  • Simon, T.N. & Travis, J. (2011) The contribution of man-made ditches to the regional stream biodiversity of the new river watershed in the Florida panhandle. Hydrobiologia 661: 163-177. DOI: 10.1007/s10750-010-0521-3.CrossrefGoogle Scholar

  • Sługocki, Ł., Czerniawski, R., Domagała, J., Krepski, T. & Pilecka-Rapacz, M. (2012) Zooplankton of three suburban lakes in relation to select abiotic conditions. Ann. Set. Environ. Protect. 14: 146-160.Google Scholar

  • Thorp, J.H., Thoms, M.C. & Delong, M.D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22: 123-147. DOI: 10.1002/rra.901.CrossrefGoogle Scholar

  • Urban, D. & Grzywna, A. (2006). Water quality and plant diversity in flows on meliorated area. Pol. J. Environ. St. 15: 488-492.Google Scholar

  • Vranovsky, M. (1995) The effect of current velocity upon the biomass of zooplankton in the River Danube side arms. Biologia 50: 461-464.Google Scholar

  • Walks, D.J. & Cyr, H. (2004). Movement of plankton through lake stream systems. Freshwat. Biol. 49: 745-759. DOI: 10.1111/j.1365-2427.2004.01220.x.CrossrefGoogle Scholar

  • Williams, P., Whitfield, M., Biggs, J., Bray, S,. Fox, G. et al. (2004). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115: 329-341. DOI: 10.1016/S0006-3207(03)00153-8.CrossrefGoogle Scholar

  • Zalewski, M. (2010). Ecohydrology for implementation of the EUwater framework directive. Wat. Manag. 164: 375-385. DOI: 10.1680/wama.1000030.CrossrefGoogle Scholar

  • Zalewski, M. (2014). Ecohydrology and Hydrologic Engineering: Regulation of Hydrology-Biota Interactions for Sustainability. J. Hydrol. Eng. 20(Special Issue: Grand Challenges of Hydrology): A4014012.CrossrefGoogle Scholar

  • Zhou, S., Tang, T., Wu, N., Fu, X. & Cai, Q. (2008). Impacts of a small dam on riverine zooplankton. Inter. Rev. Hydrobiol. 93: 297-311. DOI: 10.1002/iroh.200711038.CrossrefGoogle Scholar

About the article

Received: 2016-06-08

Accepted: 2016-08-29

Published Online: 2017-05-31

Published in Print: 2017-06-27

Citation Information: Oceanological and Hydrobiological Studies, Volume 46, Issue 2, Pages 199–211, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2017-0020.

Export Citation

© Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved..Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Łukasz Sługocki, Robert Czerniawski, Monika Kowalska-Góralska, Magdalena Senze, Anabela Reis, João Carrola, and Carlos Teixeira
International Journal of Environmental Research and Public Health, 2018, Volume 16, Number 1, Page 20
Robert Czerniawski and Monika Kowalska-Góralska
PeerJ, 2018, Volume 6, Page e5087
Robert Czerniawski and Łukasz Sługocki
Ecohydrology, 2018, Page e1963

Comments (0)

Please log in or register to comment.
Log in