Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year


IMPACT FACTOR 2016: 0.544
5-year IMPACT FACTOR: 0.778

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.257
Source Normalized Impact per Paper (SNIP) 2016: 0.548

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 46, Issue 2 (Jun 2017)

Issues

Spatial and seasonal variations in the planktonic ciliate community and its relationship with environmental factors in Daya Bay, the South China Sea

Fengxia Wu
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Key Laboratory of South China Sea Fishery Resources Development and Utilization, Minstry of Agriculture; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jianrong Huang / Zhanhui Qi
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Key Laboratory of South China Sea Fishery Resources Development and Utilization, Minstry of Agriculture; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Honghui Huang
  • Corresponding author
  • Guangdong Provincial Key Laboratory of Fishery Ecology and Environment; Key Laboratory of South China Sea Fishery Resources Development and Utilization, Minstry of Agriculture; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-31 | DOI: https://doi.org/10.1515/ohs-2017-0021

Abstract

Planktonic ciliate composition, abundance and its response to environmental change were investigated during four seasons (winter of 2013, spring, summer and autumn of 2014) in Daya Bay, the South China Sea. A total of 41 species belonging to eight orders were identified, 14 of which were dominant. Planktonic ciliate communities showed a distinct seasonal pattern in ciliate abundance and a clear seasonal shift in the taxonomic composition. The largest number of ciliate species occurred in summer, whereas the highest abundance peaked in spring, mainly due to oligotrichids. In terms of spatial distribution, ciliate species were abundant in the area of artificial reefs, and ciliate abundance was higher in the Dapeng Cove aquaculture area and lower at the Daya Bay Nuclear Power Station. Clustering analysis demonstrated that the seasonal variations of the ciliate community structure were more obvious than spatial variations. Multivariate and univariate analyses illustrated that ciliate abundance was significantly correlated with the water nutrient level and chlorophyll-a concentration, temperature, salinity and dissolved oxygen. Moreover, the dominant abiotic environmental factors affecting the spatial pattern of ciliate communities varied between seasons.

Key words: ciliate community; environmental factors; relationship; Daya Bay

References

  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. et al. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257-263. DOI: 10.3354/meps010257.CrossrefGoogle Scholar

  • Chuang, Y., Yang, H. & Lin, H. (2009). Effects of a thermal discharge from a nuclear power plant on phytoplankton and periphyton in subtropical coastal waters. J. Sea. Res. 61: 197-205. DOI: 10.1016/j.seares.2009.01.001.Web of ScienceCrossrefGoogle Scholar

  • Clarke, K.R. & Gorley, R.N. (2001). PRIMER v5: Usermanual/tutorial, Plymouth: PRIMER-E.Google Scholar

  • Elloumi, J., Carrias, J.F., Ayadi, H., Sime-Ngando, T., Boukhris, M. et al. (2006). Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar. Coast. Shelf. S. 67: 21-29. DOI: 10.1016/j.ecss.2005.10.011.CrossrefGoogle Scholar

  • GB/T 12763.4-2007 (2007). Specifications for oceanographia survey-Part 4: Survey of chemical parameters in sea water. Beijing: Standards Press of China (in Chinese)Google Scholar

  • Hoffmeyer, M.S., Biancalana, F. & Berasategui, A. (2005). Impact of a power plant cooling system on copepod and meroplankton survival (Bahía Blanca estuary, Argentina). Iheringia. Sér. Zool. Porto. Alegre. 95: 311-318.CrossrefGoogle Scholar

  • Jiang, Y., Xu, H., Hu, X., Zhu, M., Al-Rasheid, K.A.S. et al. (2011a). An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Mar. Pollut. Bull. 62: 227-235. DOI: 10.1016/j.marpolbul.2010.11.008.CrossrefWeb of ScienceGoogle Scholar

  • Jiang, Y., Xu, H., AL-Rasheid, K.A.S., Warren, A., Hu, X. et al. (2011b). Planktonic ciliate communities in a semi-enclosed bay of Yellow Sea, northern China: annual cycle. J. Mar. Biol. Assoc. UK. 91: 97-105. DOI: 10.1017/S002531541000175X.CrossrefWeb of ScienceGoogle Scholar

  • Kartasheva, N.V., Fomin, D.V., Popov, A.V., Kuchkina, M.A. & Minin, D.V. (2008). Impact assessment of nuclear and thermal power plants on zooplankton in cooling ponds. Moscow. Univ. Biol. Sci. Bull. 63(3): 118-122. DOI: 10.3103/S009639250803005X.CrossrefGoogle Scholar

  • Kchaou, N., Elloumi, J., Drira, Z., Hamza, A., Ayadi, H. et al. (2009). Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuar. Coast. Shelf. S. 83: 414-424. DOI: 10.1016/j. ecss.2009.04.019.CrossrefGoogle Scholar

  • Kim, Y.O., Shin, K., Jang, P.G., Choi, H.W., Noh, J.H. et al. (2012). Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean. Sci. J. 47: 161-172. DOI: 10.1007/s12601-012-0016-4.Web of ScienceCrossrefGoogle Scholar

  • Kofoid, C.A. & Campbell, A.S. (1929). A conspectus of the marine and freshwater Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the eastern tropical Pacific 1904-1905. Univ. Calif. Publ. Zool. 34: 1-403.Google Scholar

  • Kofoid, C.A. & Campbell, A.S. (1939). The Tintinnoinea of the eastern tropic pacific. Bull. Mus. Comp. Zool. Harvard. 84: 1-473.Google Scholar

  • Langford, T.E.L. (1990). Ecological effects of thermal discharges. Elsevier Applied Science Publishers Ltd., England, pp: 28-103.Google Scholar

  • Li, K., Yin, J., Tan, Y., Huang, L. & Song, X. (2014). Short-term variation in zooplankton community from Daya Bay with outbreaks of Penilia avirostris. Ocenonologia 56(3): 583-602. DOI: 10.5697/oc.56-3.583.CrossrefGoogle Scholar

  • Liu, S., Huang, H., Huang, L., Lian, J., Long, A. et al. (2006). Ecological response of phytoplankton to the operation of Daya Bay nuclear power station. Mar. Environ. Sci. 25(2): 9-13 (in Chinese with English abstract).Google Scholar

  • Lynn, D.H. (2008). The ciliated protozoa. Characterization, classification and guide to the literature. 3rd edition. Berlin: Springer.Google Scholar

  • Ma, Y., Ke, Z., Huang, L. & Tan, Y. (2014). Identification of human-induced perturbations in Daya Bay, China: Evidence from plankton size structure. Con. Shelf. Res. 72: 10-20. DOI: 10.1016/j.csr.2013.10.012.CrossrefGoogle Scholar

  • Madoni, P. & Zangrossi, S. (2005). Ciliated protozoa and saprobical evaluation of water quality in the Taro River (northern Italy). Ital. J. Zool. 72: 21-25.CrossrefGoogle Scholar

  • Pitta, P., Tsapakis, M., Apostolaki, E.T., Tsagaraki, T., Holmer, M. et al. (2009). ‘Ghost nutrients’ from fish farms are transferred up the food web by phytoplankton grazers. Mar. Ecol. Prog. Ser. 374: 1-6. DOI: 10.3354/meps07763.Web of ScienceCrossrefGoogle Scholar

  • Sanders, R.W. (1995). Seasonal distributions of the photosynthesizing ciliates Laboea strobila and Myrionecta rubra (=Mesodinium rubrum) in an estuary of the Gulf of Maine. Aquat. Microb. Ecol. 9: 237-242. DOI: 10.3354/ame009237.CrossrefGoogle Scholar

  • Silva, C., Yáñez, E., Martín-Díaz, M.L. & DelValls, T.A. (2012). Assessing a bioremediation strategy in a shallow coastal system affected by a fish farm culture-application of GIS and shellfish dynamic models in the Rio San Pedro, SW Spain. Mar. Pollut. Bull. 64: 751-765. DOI: 10.1016/j. marpolbul.2012.01.019.CrossrefGoogle Scholar

  • Song, X., Huang, L., Zhang, J., Huang, X., Zhang, J. et al. (2004). Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer. Mar. Pollut. Bull. 49: 1036-1044. DOI: 10.1016/j. marpolbul.2004.07.008.CrossrefGoogle Scholar

  • Song, W., Warren, A. & Hu, X. (2008). Free-living ciliates in the Bohai and Yellow Seas, China. Science Press, Beijing, pp: 1-518. (In Chinese).Google Scholar

  • Sun, C., Wang, Y., Wu, M., Dong, J., Wang, Y. et al. (2011). Seasonal Variation of Water Quality and Phytoplankton Response Patterns in Daya Bay, China. Inter. J. Env. Res. Pub. Heal. 8: 2951-2966. DOI: 10.3390/ijerph8072951.CrossrefGoogle Scholar

  • Tan, X., Shi, X., Liu, G., Xu, H., & Nie, P. (2010). An approach to analyzing taxonomic patterns of protozoancommunities for monitoring water quality in Songhua River, northeast China. Hydrobiologia 63: 193-201. DOI: 10.1007/S10750-009-0040-2.CrossrefGoogle Scholar

  • ter Braak, C.J.F. & Smilauer, P. (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: software for canonical community ordination (version 4.5). Ithaca, New York: Microcomputer Power.Google Scholar

  • Urrutxurtu, I., Orive, E. & de la Sota, A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf. S. 57: 1169-1182. DOI: 10.1016/So272-7714(03)00057-X.CrossrefGoogle Scholar

  • Utermöhl, H. (1958). Zur vervolkommung der quantitativen phytoplankton Methodik. Mitteilungen der Inernationale Vereinigung für Theoretische und Angewandte. Limnologie 9: 1-38. (In German).Google Scholar

  • Wang, Y., Lou, Z., Sun, C. & Sun, S. (2008). Ecological environment changes in Daya bay, China, from 1982 to 2004. Mar. Pollut. Bull. 56: 1871-1879. DOI: 10.1016/j.marpolbul.2008.07.017.Web of ScienceCrossrefGoogle Scholar

  • Wang, Z., Zhao, J., Zhang, Y. & Cao, Y. (2009). Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay, South China Sea. J. Environ. Sci. 21: 1268-1275. DOI: 10.1016/S1001-0742(08)62414-6.CrossrefWeb of ScienceGoogle Scholar

  • Wang, Y., Zhang, W., Lin, Y., Zheng, L., Cao, W. et al. (2013). Spatial pattern of the planktonic ciliate community and its relationship with the environment in spring in the northern Beibu Gulf, South China Sea. Oceanol. Hydrobiol. St. 43(4): 470-479. DOI: 10.2478/s13545-013-0103-x.Web of ScienceCrossrefGoogle Scholar

  • Wang, Z., Song, X. & Qi, Y. (2014a). A comparative study of phytoneuston and the phytoplankton community structure in Daya Bay, South China Sea. J. Sea. Res. 85: 474-482. DOI: 10.1016/j.seares.2013.08.002.Web of ScienceCrossrefGoogle Scholar

  • Wang, Y., Zhang, W., Lin, Y., Zheng, L., Cao, W. et al. (2014b). Spatial and seasonal variations of large tintinnid ciliates in Shenhu Bay of China. Oceanol. Hydrobiol. St. 43(3): 292-302. DOI: 10.2478/s13545-014-0144-9.CrossrefWeb of ScienceGoogle Scholar

  • Wang, Y., Zhang, W., Lin, Y., Cao, W., Zheng, L. et al. (2014c). Phosphorus, Nitrogen and Chlorophyll-a are significant factors controlling ciliate communities in Summer in the Northern Beibu Gulf, South China Sea. Plos One 9(7): e101121. DOI: 10.1371/journal.pone.0101121.CrossrefGoogle Scholar

  • Xu, H., Song, W., Warren, A., Al-Rasheid, K.A.S., Al-Farraj, S.A. et al. (2008). Planktonic protist communities in a semi-enclosed mariculture pond: structural variation and correlation with environmental conditions. J. Mar. Biol. Assoc. UK. 88: 1353-1362. DOI: 10.1017/S0025315408002129.CrossrefWeb of ScienceGoogle Scholar

  • Xu, H., Min, G.S., Choi, J.K., Jung, J.H. & Park, M.H. (2009). A approach to analyses of periphytic ciliate colonization for monitoring water quality using a modified artificial substrate in Korean coastal water. Mar. Pollut. Bull. 58: 1278-1285. DOI: 10.1016/j.marpolbul.2009.05.003.Web of ScienceCrossrefGoogle Scholar

  • Yang, J., Löder, M.G.J., Gerdts, G. & Wiltshire, K.H. (2015). Structural composition and temporal variation of the ciliate community in relation to environmental factors at Helgoland Roads, North Sea. J. Sea. Res. 10: 19-30. DOI: 10.1016/j.seares.2014.07.010.Web of ScienceCrossrefGoogle Scholar

  • Yu, Y., Zhang, W., Wang, S. & Xiao, T. (2013). Abundance and biomass of planktonic ciliates in the sea area around Zhangzi Island, Northern Yellow Sea. Acta. Ecol. Sin. 33: 45-51. DOI: 10.1016/j.chnaes.2012.12.007.CrossrefGoogle Scholar

About the article

Received: 2016-08-16

Accepted: 2016-10-10

Published Online: 2017-05-31

Published in Print: 2017-06-27


Citation Information: Oceanological and Hydrobiological Studies, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2017-0021.

Export Citation

© Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved.. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in