Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year


IMPACT FACTOR 2016: 0.544
5-year IMPACT FACTOR: 0.778

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.257
Source Normalized Impact per Paper (SNIP) 2016: 0.548

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 46, Issue 3

Issues

Baltic Sea Holocene evolution based on OSL and radiocarbon dating: evidence from a sediment core from the Arkona Basin (the southwestern Baltic Sea)

Robert Kostecki
  • Corresponding author
  • Adam Mickiewicz University in Poznań, Institute of Geoecology and Geoinformation, Department of Quaternary Geology and Paleogeography, ul. Bogumiła Krygowskiego 10, 61-680 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Moska
  • Silesian University of Technology, Institute of Physics, Department of Radioisotopes, GADAM Centre of Excellence, ul. Konarskiego 22B, 44-100 Gliwice, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-27 | DOI: https://doi.org/10.1515/ohs-2017-0031

Abstract

The paper presents the chronology of the Holocene evolution of the Baltic Sea based on the optically stimulated luminescence (OSL) and radiocarbon dating methods applied to a core taken from the Arkona Basin. The dating results were supplemented by grain size and geochemical analysis. The obtained results of OSL and radiocarbon dating enabled the construction of an age-depth model and confirmed the continuous sedimentation since 9900 cal yrs BP. One of the most interesting findings of this study is a clear relationship between the rate of sedimentation and fluctuations in the energy of depositional environment. The analyzed sediment core revealed two sections of different accumulation rates. The bottom section was deposited until 2700 cal yrs BP when the Ancylus Lake and the Littorina Sea were present, characterized by the accumulation rate estimated at around 0.46 mm year-1 and the dynamic sedimentation environment confirmed by grain size parameters. The accumulation rate at the top section deposited during the Post-Littorina Sea stage was estimated at around 1 mm year-1. This stage, characterized by more stable deposition and lower-energy environment conditions, was confirmed by small grain size, symmetric skewness and increasing content of organic matter.

Key words: southern Baltic Sea; Arkona Basin; OSL; radiocarbon dating; grain size; Holocene; accumulation rate

References

  • Adamiec, G. & Aitken, M.J. (1998). Dose-rate conversion factors: update. Ancient TL 16: 37- 50.Google Scholar

  • Andrén, E., Andrén, T. & Sohlenius, G. (2000). The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29: 233-250. .CrossrefGoogle Scholar

  • Andren, T., Björck, S., Andren, E., Conley, D., Zillén, L. et al. (2011). The Development of the Baltic Sea Basin During the Last 130 ka. In The Baltic Sea Basin (pp. 75-97). Springer, Berlin Heidelberg.Google Scholar

  • Bendixen, C., Jensen, J.B., Boldreel, L.O., Clausen, O.R., Bennike, O. et al. (2017). The Holocene Great Belt connection to the southern Kattegat, Scandinavia: Ancylus Lake drainage and Early Littorina Sea transgression. Boreas 46(1): 53-68. .CrossrefWeb of ScienceGoogle Scholar

  • Bennett, K.D. (1996). Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155-170.CrossrefGoogle Scholar

  • Berger, G.W. (2010). An alternate form of probability-distribution plot for De values. Antient TL 28, 11-22Google Scholar

  • Blaauw, M. & Christen, J.A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6: 457-474.Web of ScienceGoogle Scholar

  • Blott, S.J. & Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms 26: 1237-1248.CrossrefGoogle Scholar

  • Borówka, R.K., Osadczuk, A., Witkowski, A., Wawrzyniak- Wydrowska, B. & Duda, T. (2005). Late Glacial and Holocene depositional history in the eastern part of the Szczecin Lagoon (Great Lagoon) basin--NW Poland. Quat. Int. 130: 87-96. .CrossrefGoogle Scholar

  • Bortolot, V.J., (2000). A new modular high capacity OSL reader system. Radiation Measurements 32: 751-757.CrossrefGoogle Scholar

  • Borzenkova, I., Zorita, E., Borisova, O., Kalniņa, L., Kisielienė, D. et al. (2015). Second assessment of climate change for the Baltic Sea Basin. In The BACC II Author Team (Eds.), Second Assessment of Climate Change for the Baltic Sea Basin. (pp. 25-49). Springer. .CrossrefGoogle Scholar

  • Emelyanov, E.M. & Vaikutienė, G. (2013). Holocene environmental changes during tran sition Ancylus- Litorina stages in the Gdansk Basin, south-eastern Baltic Sea. Baltica 26: 71-82. .CrossrefGoogle Scholar

  • Feldens, P. & Schwarzer, K. (2012). The Ancylus Lake stage of the Baltic Sea in Fehmarn Belt: Indications of a new threshold. Cont. Shelf Res. 35: 43-52. .CrossrefWeb of ScienceGoogle Scholar

  • Fleming, S. (1979). Thermoluminescence techniques in archaeology. Clarendon Press, Oxford.Google Scholar

  • Folk, R.L. (1966). A review of grain-size parameters. Sedimentology 6: 73-93. .CrossrefGoogle Scholar

  • Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. (1999). Optical dating of single and multiple grains of quartz from Jinminum Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41: 1835- 1857.Google Scholar

  • Grigoriev, A., Zhamoida, V., Spiridonov, M., Sharapova, A., Sivkov, V. et al. (2011). Late-glacial and Holocene palaeoenvironments in the Baltic Sea based on a sedimentary record from the Gdansk Basin. Clim. Res. 48: 13-21. .CrossrefWeb of ScienceGoogle Scholar

  • Grimm, E.C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13: 13-35. .CrossrefGoogle Scholar

  • Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I. (2015). The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas 45: 1-45. .CrossrefWeb of ScienceGoogle Scholar

  • Jacobs, Z. (2008). Luminescence chronologies for coastal and marine sediments. Boreas 37: 508-535. .CrossrefWeb of ScienceGoogle Scholar

  • Jensen, J.B., Bennike, O., Witkowski, A., Lemke, W. & Kuijpers, A. (1999). Early Holocene history of the southwestern Baltic Sea: the Ancylus Lake stage. Boreas 28: 437-453. .CrossrefGoogle Scholar

  • Juggins, S. (2017). rioja: Analysis of Quaternary Science Data, R package version (0.9-15). (http://cran.r-project.org/ package=rioja).

  • Kortekaas, M. (2007). Post-glacial history of sea-level and environmental change in the southern Baltic Sea. Lund University. Department of Geology, Quaternary Sciences.Google Scholar

  • Kortekaas, M., Murray, A., Sandgren, P. & Björck, S. (2007). OSL chronology for a sediment core from the southern Baltic Sea: A continuous sedimentation record since deglaciation. Quat. Geochronol. 2: 95-101. CrossrefWeb of ScienceGoogle Scholar

  • Kostecki, R. (2014). Stages of the Baltic Sea evolution in the geochemical record and radiocarbon dating of sediment cores from the Arkona Basin. Oceanol. Hydrobiol. St. 43: 237-246. .CrossrefWeb of ScienceGoogle Scholar

  • Kostecki, R. & Janczak-Kostecka, B. (2011). Holocene evolution of the Pomeranian Bay environment, southern Baltic Sea. Oceanologia 53: 471-487.Google Scholar

  • Kostecki, R. & Janczak-Kostecka, B. (2012). Holocene environmental changes in the south-western Baltic Sea reflected by the geochemical data and diatoms of the sediment cores. J. Mar. Syst. 105-108: 106-114. .CrossrefWeb of ScienceGoogle Scholar

  • Kostecki, R., Janczak-Kostecka, B., Endler, M. & Moros, M. (2015). The evolution of the Mecklenburg Bay environment in the Holocene in the light of multidisciplinary investigations of the sediment cores. Quat. Int. 386: 226-238. .CrossrefWeb of ScienceGoogle Scholar

  • Lemke, W., Jensen, J.B., Bennike, O., Endler, R., Witkowski, A. et al. (2001). Hydrographic thresholds in the western Baltic Sea: Late Quaternary geology and the Dana River concept. Mar. Geol. 176: 191-201.CrossrefGoogle Scholar

  • Lougheed, B.C., Filipsson, H.L. & Snowball, I. (2013). Large spatial variations in coastal 14C reservoir age – a case study from the Baltic Sea. Clim. Past 9: 1015-1028. .CrossrefGoogle Scholar

  • Mejdahl, V. (1979). Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21, 1, pp. 61-72.Google Scholar

  • Moros, M., Lemke, W., Kuijpers, A., Endler, R., Jensen, J.B. et al. (2002). Regressions and transgressions of the Baltic basin reflected by a new high-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea). Boreas 31: 151-162. .CrossrefGoogle Scholar

  • Murray, A.S. & Wintle, A.G. (2000). Luminescence dating of quartz using an improved singlealiquot regenerative-dose protocol. Radiation Measurements 32: 57-73.CrossrefGoogle Scholar

  • Murray, A.S. & Olley, J.M. (2002). Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 1-16.Google Scholar

  • Prescott, J.R. & Stephan, L.G. (1982). The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. TLS II-1, pp. 16-25.Google Scholar

  • Racinowski, R., Szczypek, T. & Wach, J. (2001). Prezentacja i interpretacja wyników badan uziarnienia osadów czwartorzędowych [Presentation and interpretation of the results of grain-size analysis]. Silesian University, Katowice. Rees-Jones, J. (1995). Optical dating of young sediments using fine-grain quartz. Ancient TL. 13: 9-14.Google Scholar

  • Rees-Jones, J. (1995). Optical dating of young sediments using fine-grain quartz. Ancient TL. 13: 9-14.Google Scholar

  • Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G. et al. (2013). Intcal13 and marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 55: 1869-1887.Web of ScienceCrossrefGoogle Scholar

  • Rößler, D., Moros, M. & Lemke, W. (2011). The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores. Boreas 40: 231-241. .CrossrefWeb of ScienceGoogle Scholar

  • Stuiver, M. & Reimer, P.J. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35: 215-230.CrossrefGoogle Scholar

  • Szmytkiewicz, A. & Zalewska, T. (2014). Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the outer puck bay (Baltic Sea). Oceanologia 56: 85-106. .CrossrefGoogle Scholar

  • Winn, K. & Averdieck, F.-R. (1984). Post-Boreal development of the Western Baltic: comparison of two local sediment basins. Meyniana 36: 35-50.Google Scholar

  • Witkowski, A., Broszinski, A., Bennike, O., Janczak-Kostecka, B., Bo Jensen, J. et al. (2005). Darss Sill as a biological border in the fossil record of the Baltic Sea: evidence from diatoms. Quat. Int. 130: 97-109. .CrossrefGoogle Scholar

  • Zhang, J., Tsukamoto, S., Grube, A. & Frechen, M. (2014). OSL and 14 C chronologies of a Holocene sedimentary record (Garding-2 core) from the German North Sea coast. Boreas 43: 856-868. .CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-07-11

Accepted: 2016-12-06

Published Online: 2017-09-27

Published in Print: 2017-09-26


Citation Information: Oceanological and Hydrobiological Studies, Volume 46, Issue 3, Pages 294–306, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2017-0031.

Export Citation

© 2017 Faculty of Oceanography and Geography, University of Gdańsk, Poland. All rights reserved. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in