Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 47, Issue 1

Issues

Predicting chlorophyll-a concentrations in two temperate reservoirs with different trophic states using Principal Component Regression (PCR)

Kemal Çelik
Published Online: 2018-03-13 | DOI: https://doi.org/10.1515/ohs-2018-0001

Abstract

Relationships between chlorophyll-a (chl-a) concentrations and 16 physicochemical variables in temperate eutrophic Çygören and mesotrophic Ikizcetepeler reservoirs (Turkey) were determined using Principal Component Analysis (PCA). PCA was used to simplify the complexity of relationships between water quality variables. Principal component scores (PCs) were used as independent variables in the multiple linear regression analysis (MLR) to predict chl-a in both reservoirs. This procedure is called Principal Component Regression (PCR). In the eutrophic Çygören Reservoir, chl-a was significantly (p < 0.05) correlated with nitrite-nitrogen (NO2), ammonium-nitrogen (NH4), phosphate (PO4), total suspended solids (TSS), pH, Secchi disk transparency, total dissolved solids (TDS) and total phosphorus (TP). In the mesotrophic Ikizcetepeler Reservoir, chl-a was significantly (p < 0.05) correlated with TSS, NO2, chemical oxygen demand (COD), sulfate (SO4), TDS, pH and the Secchi disk. In the eutrophic Çaygören Reservoir, six PCs explained 71% of the total variation in the water quality, while in the mesotrophic Ikizcetepeler Reservoir, six PCs explained 75% of the variation. This study has shown that PCR is a more robust tool than direct MLR to simplify the relationships between water quality variables and to predict chl-a concentrations in temperate reservoirs with different trophic states.

Key words: Chlorophyll-a; eutrophic reservoir; oligotrophic reservoir; principal component analysis

References

  • Anita, B. & Pooja, D. (2013). Water quality guidelines for the management of pond fish culture. Int. J. Environ Sci. 3: 1980–2009. .CrossrefGoogle Scholar

  • APHA. (1995). Standard Methods for the Examination of Water and Wastewater (19th ed.). Washington, DC: American Public Health Association.Google Scholar

  • Arar, E.J. (1997). Determination of chlorophylls a and b and identification of other pigments of interest in marine and reshwater algae using high performance liquid chromatography with visible wavelength detection. Method 447. Washington, DC: U.S. Environmental Protection Agency.Google Scholar

  • Arslan, F. & Ergül, M. (2014). Agricultural activities in the Çaygören Dam Irrigation Area and Sourounding. JASSS 2(1): 171–190. (In Turkish). Retrieved from: http://www.asosjournal.com/DergiTamDetay. aspx?ID=63&Detay=Ozet

  • Chang, N.B., Yang, Y.J., Daranpob, A., Jin, K.R. & James, T. (2012). Spatiotemporal pattern validation of chlorophyll-a concentrations in Lake Okeechobee, Florida, using a comparative MODIS image mining approach. Int. J. Remote. Sens. 33: 2233–2260. .CrossrefWeb of ScienceGoogle Scholar

  • Çamdevirena, H., Demir, N., Kanika, A. & Keskin, S. (2005). Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecol. Model. 181: 581–589. .CrossrefGoogle Scholar

  • Hakanson, L., Malmaeus, J. M., Bodemer U. & Gerhardt, V. (2003). Coefficients of variation for chlorophyll, green algae, diatoms, cryptophytes and blue-greens in rivers as a basis for predictive modeling and aquatic management. Ecol. Model. 169: 179–196. .CrossrefGoogle Scholar

  • Huszar, V.L., Caraco, N.F., Roland, F. & Cole, J. (2006). Nutrient-chlorophyll relationships in tropical-subtropical lakes: do temperate models fit? Biogeochemistry 79: 239–250. .CrossrefGoogle Scholar

  • Jeppesen, E., Jensen, J. P., Søndergaard, M., Fenger-Grøn, M., Bramm, M.E. et al. (2015). Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modeling. Ecol. Indic. 50: 8–23. .CrossrefGoogle Scholar

  • Johnson R.A. & Wichern, D.W. (1982). Applied Multivariate Statistical Analysis. Englewood Cliffs: Prentice-Hall Inc.Google Scholar

  • Karlsson, J., Byström, P., Ask, J., Ask, P., Persson, L. et al. (2009). Light limitation of nutrient-poor lake ecosystems. Nature 460: 506–509. .CrossrefWeb of SciencePubMedGoogle Scholar

  • Köklü, R., Sengörür, B. & Topal, B. (2010). Water Quality Assessment Using Multivariate Statistical Methods-A Case Study: Melen River System (Turkey). Water. Resour. Manag. 24: 959–978. .CrossrefWeb of ScienceGoogle Scholar

  • Møller, P.H. & Rasmussen, H.U. (2004). Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshwater. Biol. 49: 432–447. .CrossrefGoogle Scholar

  • Najar, I.A. & Khan, A.B. (2012). Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis. Environ. Earth. Sci. 66: 2367–2378. –10.1007/s12665-011-1458-1.CrossrefWeb of ScienceGoogle Scholar

  • Okkan, U. & Karakan, E. (2016). Modeling the Effects of Climate Change on Ikizcetepeler Inflows: 2015–2030 Projection. IMO Teknik Dergi 450: 7379–7401. (In Turkish). Retrieved from http://dergipark.gov.tr/tekderg/issue/28138/299000

  • Phillips, G., Pietilainen O.P., Carvalho, L., Solimini, A., Solheim, A.L. et al. (2008). Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquat. Ecol. 42: 213–226. .CrossrefWeb of ScienceGoogle Scholar

  • Praveena, S.M., Kwan, O.I. & Aris, A.Z. (2011). Effects of data pretreatment procedures on principal component analysis: a case study for mangrove surface sediment datasets. Environ. Monit. Assess. 184: 6855–6868. .CrossrefGoogle Scholar

  • Schindler, D. (2012). The dilemma of controlling cultural eutrophication of lakes. Proc. R. Soc. Lond. B. Biol. Sci. 7: 4322–4332. .CrossrefGoogle Scholar

  • State Water Works. (2017). Çaygören Barajı (In Turkish). http://www2.dsi.gov.tr/baraj/detay.cfm?BarajID=32

  • Stevens, J. (1986). Applied Multivariate Statistics for the Social Science. New Jersey: Hillsdale.Google Scholar

  • Steyerberg, E.W., Harrell, F.E. & Habbema, J.D. (2001). Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med. Decis. Making 21: 45–56. .CrossrefPubMedGoogle Scholar

  • Zhang, W., Lou, I.C., Kong, Y., Ung, W.K. & Mok, M. (2013). Eutrophication analysis and principal component regression for two subtropical storage reservoirs in Macau. Desalin. Water. Treat. 51: 7331–7340. .CrossrefGoogle Scholar

About the article

Received: 2017-07-27

Accepted: 2017-09-04

Published Online: 2018-03-13

Published in Print: 2018-03-26


Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 1, Pages 1–9, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0001.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in