Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

4 Issues per year


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 47, Issue 2

Issues

Diatom record of progressive anthropopressure in the Gulf of Gdańsk and the Vistula Lagoon

Małgorzata Witak
  • Corresponding author
  • Department of Marine Geology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jarosław Pędziński
  • Department of Marine Geology, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-18 | DOI: https://doi.org/10.1515/ohs-2018-0016

Abstract

This study describes the subfossil diatom flora in the surface sediments of the Polish coastal waters in relation to human impact. The material studied consists of the uppermost parts of seven sediment cores collected from the SW Gulf of Gdańsk and eight cores from the Vistula Lagoon. Our results show the present-day ecological state of both basins just before the planned construction of a navigable channel of the Vistula Spit, which will be the next factor affecting their hydrology. In different parts of the Gulf of Gdańsk, cultural eutrophication resulted in a distinct “anthropogenic assemblage” in the surface sediments. Its structure relates directly to the distance from the mouth of the Vistula River. In the surface assemblages of the Vistula Lagoon, the number of salt-tolerant diatoms increased with the salinity of the basin. Locally, a large number of pollution-resistant taxa was also observed.

Key words: cultural eutrophication; environment pollution; diatoms; Gulf of Gdańsk; Vistula Lagoon

References

  • Andrén, E. (1999). Changes in the composition of the diatom flora during the last century indicate increased eutrophication of the Oder estuary, southwestern Baltic Sea. Estuarine, Coastal and Shelf Science 48(6): 665–676. .CrossrefGoogle Scholar

  • Andrén, E., Shimmield, G. & Brand, T. (1999). Environmental changes of the last three centuries indicated by siliceous microfossil records from the southwestern Baltic Sea. The Holocene 9(1): 25–38. .CrossrefGoogle Scholar

  • Battarbee, R.W. (1986). Diatom analysis. In B.E. Berglund (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 527–570). London: John Wiley & Sons Ltd.Google Scholar

  • Bąk, M., Wawrzyniak-Wydrowska, B. & Witkowski, A. (2001). Odra river discharge as a factor affecting species composition of the Szczecin Lagoon diatom flora, Poland. In R. Jahn, J.P. Kociolek, A. Witkowski & P. Compère (Eds.), Lange-Bertalot-Festschrift Studies on diatoms (pp. 491 – 506). Rugell: A.R.G. Gantner Verlag K.G.Google Scholar

  • Bogaczewicz-Adamczak, B. & Dziengo, M. (2003). Using benthic communities and diatom indices to assess water pollution in the Puck Bay (southern Baltic Sea) littoral zone. Oceanological and Hydrobiological Studies 32(4): 131–157.Google Scholar

  • Bogaczewicz-Adamczak, B. & Miotk, G. (1985). Z biostratygrafii osadów Zalewu Wiślanego. Peribalticum 3: 79–96.Google Scholar

  • Cyberska, B. (1990). Temperatura wody. In A. Majewski (Ed.) Zatoka Gdańska (pp. 187–204). Warszawa: IMGW, Wydawnictwa Geologiczne.Google Scholar

  • Cyberska, B. (1992). Thermohaline conditions. An assessment of the effects of pollution in the Polish coastal area of the Baltic 1984-1989. Studia i Materiały Oceanolologiczne 61(2): 73–92.Google Scholar

  • Denys, L. (1991). A check-list of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements. I. Introduction, ecological code and complete list. Professional Paper Belgium Geological Survey 246: 1–41.Google Scholar

  • Elmgren, R. (1989). Man’s impact on the ecosystem of the Baltic Sea: energy flows today and at the turn of the century. Ambio 18: 326–332.Google Scholar

  • Grekov, A.W., Piechura, J. & Prokofieva, I. (1975). Charakterystyka rozkładu przestrzennego temperatury wody. In N.N. Łazarienko & A. Majewski (Eds.), Hydrometeorologiczny ustrój Zalewu Wiślanego (pp. 285–288). Warszawa: IMGW, Wydawnictwa Komunikacji i Łączności.Google Scholar

  • HELCOM (2009). Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region: Executive Summary. Balt. Sea Environ. Proc. 115A.Google Scholar

  • Howarth, R., Anderson, D., Cloern, J., Elfring, C., Hopkins, C. et al. (2000). Nutrient pollution of coastal rivers, bays, and seas. Issues in Ecology 7: 1–15.Google Scholar

  • Humborg, C., Smedberg, E., Rodriguez Medina, M. & Mörth, C.- M. (2008). Changes in dissolved silicate loads to the Baltic Sea – The effects of lakes and reservoirs. Journal of Marine Systems 73: 223–235. .CrossrefGoogle Scholar

  • Hustedt, F. (1927–1966). Die Kieselalgen Deutschlands, Österreichs und der Schweiz 1–3. In Dr. L. Rabenhorsts (Ed.) Kryptogamen flora von Deutschland, Österreich und der Schweiz 7. Leipzig: Akademische Verlerlagsbuchhandlung.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/1, Stuttgart & New York: G. Fischer.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J.Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/2. Stuttgart & New York: G. Fischer.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1991a). Bacillariophyceae. 3.Teil: Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/3. Stuttgart & Jena: G. Fischer.Google Scholar

  • Krammer, K. & Lange-Bertalot, H. (1991b). Bacillariophyceae. 4.Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/4.Stuttgart & Jena: G. Fischer.Google Scholar

  • Kravtsov, V.A., Kravchina, M.D., Pankratova, N.A. & Kuleshov, A.F. (2002). The recent sedimentation processes in the Curonian and Vistula Lagoons. In E.M. Emelyanov (Ed.) Geology of the Gdańsk Basin, Baltic Sea (pp. 352–367). Kaliningrad: Yantarny Skaz.Google Scholar

  • Lange-Bertalot, H. (2001). Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato, Frustulia. In H. Lange-Bertalot (Ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats 2, Ruggell: A.R.G. Gantner Verlag K.G.Google Scholar

  • Lange-Bertalot, H. & Krammer, K. (1987). Bacillariaceae, Epithemiaceae, Surirellaceae. Bibliotheca Diatomologica 18: 1–289.Google Scholar

  • Leśniewska, M. & Witak, M. (2008). Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part III). Oceanological and Hydrobiological Studies 37(4): 35–52. .CrossrefGoogle Scholar

  • Leśniewska, M. & Witak, M. (2011). Diatoms as indicators of eutrophication in the western part of the Gulf of Gdańsk, Baltic Sea. Oceanological and Hydrobiological Studies 40(1): 68–81. .CrossrefGoogle Scholar

  • Łomniewski, K. (1958). Zalew Wislany. Warszawa: PWN.Google Scholar

  • Łysiak-Pastuszak, E., Drgas, N. & Piątkowska, Z. (2004). Eutrophication in the Polish coastal zone: the past, present status and future scenarios. Marine Pollution Bulletin 49: 186–195. .CrossrefPubMedGoogle Scholar

  • Majewski, A. (1972). Charakterystyka hydrologiczna estuariowych wód u polskiego wybrzeza. Prace PIHM. 105: 3–40.Google Scholar

  • Majewski, A. (1990). General morphometrical characteristics of the Gulf of Gdańsk. In A. Majewski (Ed.) The Gulf of Gdańsk (pp. 10–15). Warszawa: IMGW, Wyd. Geologiczne.Google Scholar

  • Makowski, J. (1995). Setna rocznica wykonania przekopu Wisły 1895–1995. Gdańsk: Wydawnictwo IBW PAN.Google Scholar

  • Mazur-Marzec, H. & Pliński, M. (2009). Do toxic cyanobacteria blooms pose a treat to the Baltic ecosystem? Oceanologia 51(3): 293–319. .CrossrefGoogle Scholar

  • Mikulski, Z. (1960). Udział wód rzecznych w stosunkach hydrologicznych Zalewu Wiślanego. Biuletyn PIHM 1: 56–69.Google Scholar

  • Niemkiewicz, E. & Wrzołek, L. (1998). Phytoplankton as eutrophication indicators in the Gulf of Gdańsk water. Oceanological Studies 27(4): 77–92.Google Scholar

  • Nowacki, J. (1993). Termika, zasolenie i gęstość wody. In K. Korzeniewski (Ed.) Zatoka Pucka (pp. 79–112). Gdańsk: Fundacja Rozwoju Uniwersytetu Gdańskiego.Google Scholar

  • Olli, K., Clarke, A., Danielsson, Å., Aigas, J., Conley, D.J. et al. (2008). Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea. Journal of Marine Systems 73: 284–299.CrossrefGoogle Scholar

  • Pankow, H. (1990). Ostsee -Algenflora. Jena: Fischer.Google Scholar

  • Pliński, M. (1991). Kondycja ekologiczna Bałtyku. In J. Błażejewski & D. Schuller (Eds). Zanieczyszczenie iodnowa Zatoki Gdańskiej, problem o znaczeniu ogólnoeuropejskim (pp. 17–21). Gdańsk: Wydawnictwo UG.Google Scholar

  • Przybyłowska-Lange, W. (1974). Rozwój Zalewu Wiślanego w świetle analizy okrzemkowej. Prace IMGW 2: 129–162.Google Scholar

  • Rönnberg, C. & Bonsdorf, E. (2004). Baltic Sea eutrophication: area-specific consequences. Hydrobiologia 514: 227–241. .CrossrefGoogle Scholar

  • Round, F.E. (1981). The ecology of algae. Cambridge: Cambridge University Press.Google Scholar

  • Schrader, H. & Gersonde, R. (1978). Diatoms and silicofiagellates in the eight meters sections of the lower Pleistocene at Capo Rossello. Utrecht Micropaleontological Bulletin 17: 129–176.Google Scholar

  • Stachura, K. & Witkowski, A. (1997). Response of the Gulf of Gdańsk diatom flora to the sewage run-off from the Vistula river. Fragmenta Floristica Geobotanica 42(2): 517–545.Google Scholar

  • Stachura-Suchoples, K. (1998). The last 200 years as revealed by diatom analysis – preliminary results. Proceedings of the 15th International Diatom Symposium 209–226.Google Scholar

  • Stachura-Suchoples, K. (2001). Bioindicative values of dominant diatom species from the Gulf of Gdańsk, Southern Baltic Sea, Poland. In R. Jahn, J.P. Kociolek, A. Witkowski & P. Compère (Eds.), Lange-Bertalot-Festschrift Studies on diatoms (pp. 477–490). Rugell: A.R.G. Gantner Verlag K.G.Google Scholar

  • Stachura-Suchoples, K. (2006). Diatoms as indicators of the influence of the Vistula River inflow on the Gulf of Gdańsk during the Holocene. In N. Ognjanova-Rumenova & K. Manoylov (Eds.). Advances in phycological studies, Festschrift in Honour of Prof. Dobrina Temniskova-Topalov (pp. 283–291). Sofia-Moscow: PENSOFT Publishers & University Publishing House.Google Scholar

  • Starkel, L. (2001). Historia Doliny Wisły od ostatniego zlodowacenia. Monografia Instytutu Geografii i Przestrzennego Zagospodarowania im. S. Leszczynskiego PAN.Google Scholar

  • Van Dam, H., Mertens, A. & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133. .CrossrefGoogle Scholar

  • Vos, P.C. & De Wolf, H. (1993). Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologia 269/270: 285–296. .CrossrefGoogle Scholar

  • Witak, M. (2000). A diatom record of Late Holocene environmental changes in the Gulf of Gdańsk. Oceanological Studies 19(2): 57–74.Google Scholar

  • Witak, M. (2010). Application of diatom biofacies in reconstructing the evolution of sedimentary basins. Records from the southern Baltic Sea differentiated by the extent of the Holocene marine transgressions and human impact, Diatom Monographs 12, Ruggell, Liechtenstein: A.R.G. Gantner Verlag K.G.Google Scholar

  • Witak, M. & Jankowska, D. (2005). The Vistula Lagoon evolution based on diatom records. Baltica 18 (2): 68–76.Google Scholar

  • Witak, M., Jankowska, D. & Piekarek-Jankowska, H. (2006). Holocene diatom biostratigraphy of the SW Gulf of Gdańsk, Southern Baltic Sea (part I). Oceanological and Hydrobiological Studies 35(4): 307–329.Google Scholar

  • Witkowski, A. (1994). Recent and fossil diatom flora of the Gulf of Gdańsk, Southern Baltic Sea. Biblitheca Diatomologica 28: 1–313.Google Scholar

  • Witkowski, A., Lange-Bertalot, H. & Metzeltin, D. (2000). Diatom flora of marine costs I. Iconographica Diatomologica 7: 1–925.Google Scholar

  • Witkowski, A. & Pempkowiak, J. (1995). Reconstructing the development of human impact from diatoms and 210Pb sediment dating (the Gulf of Gdańsk – southern Baltic Sea). Geographica Polonica 65: 63–78.Google Scholar

  • Wypych, K. (1975). Charakterystyka morfologiczna. In N.N. Łazarienko & A. Majewski (Eds.), Hydrometeorologiczny ustrój Zalewu Wiślanego (pp. 33–40). Warszawa: IMGW, Wydawnictwa Komunikacji i Łączności.Google Scholar

About the article

Received: 2017-09-05

Accepted: 2017-10-27

Published Online: 2018-06-18

Published in Print: 2018-06-26


Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 2, Pages 167–180, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0016.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in