Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2018: 0.674
5-year IMPACT FACTOR: 0.854

CiteScore 2018: 0.84

SCImago Journal Rank (SJR) 2018: 0.318
Source Normalized Impact per Paper (SNIP) 2018: 0.518

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 47, Issue 2

Issues

Spatial variability of long-term trends in significant wave height over the Gulf of Gdańsk using System Identification techniques

Jordan Badur
  • Department of Physical Oceanography, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Witold Cieślikiewicz
  • Corresponding author
  • Department of Physical Oceanography, Institute of Oceanography, Faculty of Oceanography and Geography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-06-18 | DOI: https://doi.org/10.1515/ohs-2018-0018

Abstract

The significant wave height field over the Gulf of Gdańsk in the Baltic Sea is simulated back to the late 19th century using selected data-driven System Identification techniques (Takagi-Sugeno-Kang neuro-fuzzy system and non-linear optimization methods) and the NOAA/OAR/ESRL PSD Reanalysis 2 wind fields. Spatial variability of trends in the simulated dataset is briefly presented to show a cumulative “storminess” increase in the open, eastern part of the Gulf of Gdańsk and a decrease in the sheltered, western part of the Gulf.

Key words: Gulf of Gdańsk; wave climate; significant wave height; system identification; neuro-fuzzy systems; wave modeling

References

  • Bakhtyar, R., Ghaheri, A., Yeganeh-Bakhtiary, A. & Jeng, D.-S. (2011). Cross-shore sediment transport estimation using fuzzy inference in the swash zone. Journ. Franklin Inst. 348(8): 2005–2025.CrossrefGoogle Scholar

  • Breugem, W.A. & Holthuijsen, L.H. (2007). Generalised wave growth from Lake George. J. Waterw. Port Coast. Ocean Eng. 133(3): 173–182.CrossrefGoogle Scholar

  • Bricheno, L.M., Soret, A., Wolf, J., Jorba, O. & Baldasano, J.M. (2013). Effect of high-resolution meteorological forcing on nearshore wave and current model performance. J. Atmospheric Ocean. Technol. 30: 1021–1037.Web of ScienceCrossrefGoogle Scholar

  • Camus, P., Fernando, J., Mendez, F.J. & Medina, R. (2011). A hybrid efficient method to downscale wave climate to coastal areas. Coast Eng. 58(9): 851–862. .CrossrefWeb of ScienceGoogle Scholar

  • Cañellas, B., Balle, S., Tintoré, J. & Orfila, A. (2010). Wave height prediction in the Western Mediterranean using genetic algorithms. Ocean Eng. 37(8–9): 742–748. .CrossrefWeb of ScienceGoogle Scholar

  • Cerkowniak, G.R., Ostrowski, R. & Szmytkiewicz, P. (2015). Climate change related increase of storminess near Hel Peninsula, Gulf of Gdańsk, Poland. J. Water Clim. Change 6(2): 300–312. .CrossrefGoogle Scholar

  • Chaudhuri, S. & Middey, A. (2011). Adaptive neuro-fuzzy inference system to forecast peak gust speed during thunderstorms. Meteorol. Atmos. Phys. 114: 139–149.Web of ScienceCrossrefGoogle Scholar

  • Cieślikiewicz, W. & Herman, A. (2002). Wave and current modelling over the Baltic Sea and the Gdańsk Bay. In Proc. 28th Int. Coast. Eng. Conf. ASCE, 7–12 July 2002, (pp. 176–187), Cardiff, ASCE.Google Scholar

  • Cieślikiewicz, W. & Paplińska-Swerpel, B. (2008). A 44-year hindcast of wind wave ff elds over the Baltic Sea. Coast. Eng. 55: 849–905.Google Scholar

  • Compo, G., Whitaker, J., Sardeshmukh, P., Matsui, N., Allan, R. et al. (2011). The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 137: 1–28.CrossrefGoogle Scholar

  • Duan, W.Y., Han, Y., Huang, L.M., Zhao, B.B. & Wang, M.H. (2016). A hybrid EMD-SVR model for the short-term prediction of significant wave height. Ocean Eng. 124: 54–73. .CrossrefWeb of ScienceGoogle Scholar

  • Etemad-Shahidi, A. & Mahjoobi, J. (2009). Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng. 36(15–16): 1175–1181. .CrossrefWeb of ScienceGoogle Scholar

  • Herman, A., Kaiser, R. & Niemayer, H.D. (2009). Wind-wave variability in shallow tidal sea – Spectral modelling combined with neural network methods. Coastal Eng. 56: 759–772.CrossrefWeb of ScienceGoogle Scholar

  • Herman-Iżycki, L., Jakubiak, B., Nowiński, K. & Niezgódka, B. (2002). UMPL – the Numerical Weather Prediction System for Operational Applications. In B. Jakubiak (Ed.), Research works based on the ICMs UMPL numerical weather prediction system results (pp. 14–27). Warsaw: Publ. ICM.Google Scholar

  • Hünicke, B., Zorita, Z., Soomere, T., Madsen, K.S., Johansson, M. et al. (2015). Recent Change – Sea Level and Wind Waves. In The BACC II Author Team (Eds.), Second Assessment of Climate Change for the Baltic Sea Basin (pp. 155–185). Cham, Heidelberg, New York, Dordrecht, London: Springer International Publishing. .CrossrefGoogle Scholar

  • Jang, R.J.-S. (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 23(3): 665–685.CrossrefGoogle Scholar

  • Jang, R. J.-S. & Sun, C.-T. (1993). Functional equivalence between Radial Basis Functions and Fuzzy Inference Systems. IEEE Trans. on Neural Networks. 4(1): 156–159. .CrossrefGoogle Scholar

  • Kelpšaitė, L. Dailidiene, I. & Soomere, T. (2011). Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993–2008. Boreal Environ. Res. 16(A): 220–232.Google Scholar

  • Komen, G., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. et al. (1994). Dynamics and modelling of ocean waves. Cambridge: Cambridge University Press.Google Scholar

  • Krishna Kumar, N., Savitha, R. & Al Mamun, A. (2017). Regional ocean wave height prediction using sequential learning neural networks. Ocean Eng. 129: 605–612. .CrossrefWeb of ScienceGoogle Scholar

  • Ljung, L. (1987). System identification: Theory for user. Englewood Cliffs, USA: Pretince-Hall.Google Scholar

  • Londhe, S.S., Dixit, P.R., Balakrishnan Nair, T.M., Sirisha, P. & Jain, R. (2016). A Coupled Numerical and Artificial Neural Network Model for Improving Location Specific Wave Forecast. Appl. Ocean Res. 59: 483–491. .CrossrefGoogle Scholar

  • Mahjoobi, L., Etemad-Shahidi, A. & Kazeminezhad, M.H. (2008). Hindcasting wave parameters using different soft computing methods. Appl. Ocean Res. 30: 28–36.CrossrefWeb of ScienceGoogle Scholar

  • Mahjoobi, J. & Mosabbeb, E.A. (2009). Prediction of significant wave height using regressive support vector machines. Ocean Eng. 36(5): 339–347. .CrossrefWeb of ScienceGoogle Scholar

  • Massel, S.R. (1996). Ocean surface waves: their physics and prediction. Singapore: World Scientific Publishing.Google Scholar

  • Malekmohamadi, I., Bazargan-Lari, M.R., Kerachian, R., Nikoo, M.R. & Fallahnia, M. (2011). Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean. Eng. 38: 487–497.CrossrefWeb of ScienceGoogle Scholar

  • Özger, M. (2010). Significant wave height forecasting using wavelet fuzzy logic approach. Ocean Eng. 37: 1443–1451.CrossrefWeb of ScienceGoogle Scholar

  • Räämet, A., Suursaar, Ü., Kullas, T. & Soomere, T. (2009). Reconsidering uncertainties of wave conditions in the coastal areas of the Northern Baltic Sea. J. Coast. Res. 56: 257–261.Google Scholar

  • Reikard, G. & Rogers, E.W. (2011). Forecasting ocean waves: Comparing a physics-based model with statistical models. Coastal Eng. 58: 409–416. .CrossrefWeb of ScienceGoogle Scholar

  • Reistad, M., Breivik, Ø., Haakestad, H., Aarnes, O.J., Furenik, B.R. et al. (2011). A high resolution hindcast of wind and waves for the North Sea, the Norwegian Sea and the Barents Sea. Journ. Geophys. Res. 116: C05019. .CrossrefGoogle Scholar

  • Ris, R.C, Holthuijsen, L.H. & Booij, N. (1999). A third-generation wave model for coastal regions 2. Verification. Journ. Geophys. Res. 104(C4): 7667–7681.CrossrefGoogle Scholar

  • Różyński, G. (2010). Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland; its drivers and impacts. Ocean Eng. 37: 186–199.CrossrefWeb of ScienceGoogle Scholar

  • Soomere, T. (2008). Extreme and decadal variations of the northern Baltic Sea wave conditions. In E. Pelinovsky & C. Kharif (Eds.), Extreme Ocean Waves (pp. 139–157). Amsterdam, Springer Netherlands.Google Scholar

  • Soomere, T. & Räämet, A. (2011a). Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci. 7: 141–150.Web of ScienceCrossrefGoogle Scholar

  • Soomere, T. & Räämet, A. (2011b). Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia 53: 335–371.Web of ScienceGoogle Scholar

  • Soomere, T., Weisse, R. & Behrens, A. (2012). Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci. 8: 287–300.CrossrefWeb of ScienceGoogle Scholar

  • Swail, V.R. & Cox, A.T. (2000). On the use of NCEP-NCAR Reanalysis surface marine wind fields for a long term North Atlantic wave hindcasts. J. Atmospheric Ocean. Technol. 17: 532–545.CrossrefGoogle Scholar

  • Sylaios, G., Bouchette, F., Tsihrintzis, V.A. & Denamiel, C. (2009). A fuzzy inference system for wind-wave modelling. Ocean Eng. 36(17–18 ): 1358–1365.CrossrefGoogle Scholar

  • Takagi, R. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern. 15: 116–132.Google Scholar

  • The WAMDI Group: Hasselmann, S., Hasslemann, K., Bauer, E., Janssen, P.A.E.M., Komen, J.G. et al. (1988). The WAM model – a third generation ocean wave prediction model. J. Phys. Oceanogr. 18: 1775–1810.CrossrefGoogle Scholar

  • The WISE Group: Cavaleri, L., Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M. et al. (2007). Wave modelling – The state of art. Progr. Oceanogr. 75: 603–674.CrossrefGoogle Scholar

  • Tolman, H.L. (2002): Testing of WAVEWATCH III Version 2.22 in NCEP as NWW3 Ocean Wave Model Suite. NOAA/NWS/NCEP/OMB Technical Note Nr. 214.Google Scholar

  • USACE. (2008). Coast Engineering Manual. USA Corps of Engineers.Google Scholar

  • Zaitseva-Pärnaste, I., Soomere, T. & Tribštok, O. (2011). Spatial variations in wave climate change in the eastern part of the Baltic Sea. Journ. Coastal Res. 64: 195–199.Google Scholar

  • Zanaganeh, M., Mousavi, S.J. & Etemad-Shahidi, A.F. (2009). A hybrid genetic algorithm – adaptive network-based fuzzy inference system in prediction of wave parameters. Eng. Appl. Artif. Intel. 22: 1194–1202.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-08-29

Accepted: 2017-11-21

Published Online: 2018-06-18

Published in Print: 2018-06-26


Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 2, Pages 190–201, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0018.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in