Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 47, Issue 4


Temporal variability of enterococci and associated sources at three subtropical recreational beaches

Claudia Esmeralda León-López
  • Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), 85454 Guaymas, Sonora, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Alfredo Arreola-Lizárraga
  • Corresponding author
  • Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), 85454 Guaymas, Sonora, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gustavo Padilla-Arredondo
  • Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), 85454 Guaymas, Sonora, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jorge Eduardo Chávez-Villalba
  • Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), 85454 Guaymas, Sonora, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Renato Arturo Mendoza-Salgado / Lía Celina Méndez-Rodríguez / Jaqueline García-Hernández
  • Centro de Investigación de Alimentación y Desarrollo, A.C. (CIAD), Guaymas, Sonora, CP 85480, Mexico
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-03 | DOI: https://doi.org/10.1515/ohs-2018-0031


We have examined enterococci concentrations in water and sand (dry and wet) at three semi-arid subtropical recreational beaches to assess public health risks. To determine the concentration of enterococci, water and sand samples were collected before, during and after the Easter Week (when the largest influx of users occurs), and in the wintertime. The lowest concentrations (< 100 MPN 100 ml-1) were recorded before the Easter Week, the highest concentrations (> 1500 MPN 100 ml-1) during and after the Easter Week, and concentrations < 500 MPN 100 ml-1 in the wintertime. Enterococci concentrations in sand were generally < 200 MPN 100 ml-1. Variability in enterococci concentrations can be explained by the influx of users during the Easter Week, rainfall runoff and the increase in water temperature after the Easter Week, as well as by winds and the presence of dogs and birds in the wintertime. The highest health risks occur during and after the Easter Week.

Key words: bacteria; fecal contamination; sand beaches; sanitary quality; enterococci


  • Anderson, D.W., Mendoza, J.E. & Keith, J.O. (1976). Seabirds in the Gulf of California: A vulnerable, international resource. Nat. Resour. J. 16: 484–505.Google Scholar

  • Bonilla, T., Nowosielski, K., Cuvelier, M., Hartz, A., Green, M. (2007). Prevalence and distribution of fecal indicator organisms in South Florida beach sand and preliminary assessment of health effects associated with beach sand exposure. Mar. Pollut. Bull. 54: 1472–148210.1016/j. marpolbul.2007.04.016.Web of ScienceCrossrefGoogle Scholar

  • Byappanahalli, M.N., Nevers, M.B., Korajkic, A., Staley, S.R. & Harwood, B.J. (2012). Enterococci in the Environment. Microbiol. Mol. Biol. R 76(4): 685–70610.1128/MMBR.00023-12.CrossrefGoogle Scholar

  • Byappanahalli, M.N., Nevers, M.B., Whitman, R.L., Ge, Z., Shively, D. (2015). Wildlife, urban inputs, and landscape configuration are responsible for degraded swimming water quality at an embayed beach. J. Great. Lakes Res. 41: 156–16310.1016/j.jglr.2014.11.027.CrossrefWeb of ScienceGoogle Scholar

  • Cabelli, V.J., Dufour, A.P., McCabe, L.J. & Levin, M.A. (1982). Swimming-associated gastroenteritis and water quality. Am. J. Epidemiol. 115(4): 606–616.CrossrefPubMedGoogle Scholar

  • CONAGUA (Comisión Nacional Del Agua). (2017). Program clean beaches, safe water and environment Retrieved October 15, 2017, from ftp://ftp.conagua.gob.mx/playaslimpias/Resumengeneral/ (In Spanish).

  • Dwight, R.H., Brinks, M.V., Kumar, G.S. & Semenza, J.C. (2007). Beach attendance and bathing rates for Southern California beaches. Ocean. Coast. Manage 50: 847–85810.1016/j.ocecoaman.2007.04.002.CrossrefWeb of ScienceGoogle Scholar

  • Fattal, B., Peleg-Olevsky, E. & Cabelli, B.J. (1991). Bathers as a possible source of contamination for swimming-associated illness at marine bathing beaches Int. J. Environ. Heal. R 1: 204–21410.1080/0960312910935672.CrossrefGoogle Scholar

  • Fewtrell, L. & Kay, D. (2015). Recreational Water and Infection: A Review of Recent Findings. Curr. Envir. Health Rpt. 2: 85–9410.1007/s40572-014-0036-6.CrossrefGoogle Scholar

  • Fleisher, J.M., Fleming, L.E., Solo-Gabriele, H.M., Kish, J.K., Sinigalliano, C.D. (2010). The beaches study: health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters. Int. J. Epidemiol. 39: 1291–129810.1093/ije/dyq084.PubMedCrossrefWeb of ScienceGoogle Scholar

  • García, E. (2004). Modifications to Köppen's climate classification system. Adaptations to the conditions of the Mexican Republic Mexico, Instituto de Geografía, Universidad Nacional Autónoma de México. (In Spanish).Google Scholar

  • García-Morales, G., Arreola-Lizárraga, J.A., Mendoza-Salgado, R.A., García-Hernández, J., Rosales-Grano, P. (2018). Evaluation of the recreational aptitude of beaches as perceived by users. J. Environ. Plann. Man 61(1): 161–17510.1080/09640568.2017.1295924.CrossrefGoogle Scholar

  • Gonzalez, S.M., & Emiliani, F. (2005). Preliminary characterization of microbiological quality of sand beaches. Natura Neotropicalis 36: 81–8410.14409/natura.v1i36.3827. (In Spanish).Google Scholar

  • Haile, R.W., Witte, J.S., Gold, M., Cressey, R., McGee, C. (1999). The health effects of swimming in ocean water contaminated by storm drain runoff . Epidemiology 10(4): 355–36310.1097/00001648-199907000-00004.PubMedCrossrefGoogle Scholar

  • Hanes, N.B. & Fragala, R. (1967). Effect of Seawater Concentration on Survival of Indicator Bacteria. Water Pollut. Control. 39(1): 97–104. PMID: 6037619.Google Scholar

  • Heaney, C.D., Exum, N.G., Dufour, A.P., Brenner, K.P., Haugland, R.A. (2014). Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches Sci. Total Environ. 497–498: 440–44710.1016/j. scitotenv.2014.07.113.Web of SciencePubMedGoogle Scholar

  • Huang, G., Falconer, R.A. & Lin, B. (2017). Integrated hydro-bacterial modelling for predicting bathing water quality. Estuar. Coast. Shelf S. 188: 145–15510.1016/j.ecss.2017.01.018.CrossrefWeb of ScienceGoogle Scholar

  • Mitchell, D.L., Ivanova, D., Rabin, R., Brown, T.J. & Redmond, K. (2002). Gulf of California Sea Surface Temperatures and the North American Monsoon: Mechanistic Implications from Observations. J. Climate 15(17): 2261–2281CrossrefGoogle Scholar

  • Mudryk, Z.J., Gackowska, J, Skórczewski, P, Perlinski, P. & Zdanowicz, M. (2014). Occurrence of potentially human pathogenic bacteria in the seawater and in the sand of the recreational coastal beach in the southern Baltic Sea. Oceanol. Hydrobiol. Stud. 43(4): 366–37310.2478/s13545-014-0154-7.Web of ScienceGoogle Scholar

  • Noble, R., Moore, D., Leecaster, M., McGee, C. & Weisberg, S.B. (2003). Comparison of total coliform, fecal coliform and enterococcus bacterial indicators response for ocean recreational water quality testing. Water Res 37: 163–164310.1016/s0043-1354(02)00496-7.Google Scholar

  • Oliveira, S.S., Sorgine, M.H., Bianco, K., Pinto L.H., Barreto C. (2016). Detection of human fecal contamination by nifH gene quantification of marine waters in the coastal beaches of Rio de Janeiro, Brazil. Environ. Sci. Pollut. Res. 23(24): 25210–25217. CrossrefWeb of ScienceGoogle Scholar

  • Pinto, K., Hachich, E., Sato, M., Di Bari, M., Coelho, M.C.L.S. (2012). Microbiological quality assessment of sand and water from three selected beaches of South Coast, Sao Paulo State, Brazil. Water Sci. Technol. 66(11): 2475–248210.2166/wst.2012.494.CrossrefWeb of ScienceGoogle Scholar

  • Praveena, S.M., Chen, K.S. & Ismail, S.N. (2013). Indicators of microbial beach water quality: Preliminary findings from Teluk Kemang beach, Port Dickson (Malaysia). Mar. Pollut. Bull 76: 417–41910.1016/j.marpolbul.2013.08.028.Web of SciencePubMedCrossrefGoogle Scholar

  • Pruss, A. (1998). Review of epidemiological studies on health effects from exposure to recreational water. Int. J. Epidemiol. 27: 1–910.1093/ije/27.1.1.PubMedCrossrefGoogle Scholar

  • Quilliam, R.S., Kinzelman, J., Brunner, J. & Oliver, D.M. (2015). Resolving conflicts in public health protection and ecosystem service provision at designated bathing waters. J. Environ. Manage. 161: 237–24210.1016/j. jenvman.2015.07.017.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Sabino, R., Rodrigues, R., Costa, I., Carneiro, C., Cunha, M. (2014). Routine screening of harmful microorganisms in beach sands: Implications to public health. Sci. Total Environ. 472: 1062–106910.1016/j.scitotenv.2013.11.091.PubMedWeb of ScienceCrossrefGoogle Scholar

  • SE (Secretaria de Economía). (2016). Mexican Norm NMX-AA-120-SCFI-2016 which establishes the requirements and specifications of sustainability of beach quality. Mexico. (In Spanish).Google Scholar

  • Shuval, H. (2003). Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment J. Water. Health 1(2): 53–64.CrossrefPubMedGoogle Scholar

  • Signoretto, C., Burlacchini, G., Lleo, M.M., Pruzzo, C., Zampini, M. (2004). Adhesion of Enterococcus faecalis in the Nonculturable State to Plankton Is the Main Mechanism Responsible for Persistence of This Bacterium in both Lake and Seawater. Appl. Environ. Microbiol. 70(11): 6892–689610.1128/aem.70.11.6892-6896.2004.CrossrefPubMedGoogle Scholar

  • Tilburg, Ch.E., Jordan, L.M., Carlson, A.E., Zeeman, S.I. & Yund, P.O. (2015). The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine. Roy. Soc. Open Sci 2: 140–42910.1098/rsos.140429.Web of ScienceGoogle Scholar

  • Vega-Granillo, E., Cirett-Galán, S., De la Parra-Velasco, M. & Zavala-Juárez, R. (2011). Hidrogeología de Sonora, Mexico (Hydrogeology of Sonora Mexico). In T. Calmus (Ed.), Panorama de la geología de Sonora, México (pp. 57–88). Universidad Nacional Autónoma de México. Boletín Instituto de Geología. (In Spanish).Google Scholar

  • Whitman, R., Harwood, V., Edge, T., Nevers, M.B., Byappanahalli, M. (2014). Microbes in beach sands: integrating environment, ecology and public health. Rev. Environ. Sci. Bio-Technol. 13(3): 329–36810.1007/s11157-014-9340-8.Web of ScienceCrossrefGoogle Scholar

  • WHO (World Health Organization). (2003). Guidelines for safe recreational water environments. Vol. 1 Coastal and fresh waters Retrieved December 15, 2016, from http://www.who.int/water_sanitation_health/publications/srwe1/en/

  • Wright, M.E., Solo-Gabriele, H.M., Elmir, S. & Fleming, L.E. (2009). Microbial load from animal feces at a recreational beach. Mar. Pollut. Bull. 58: 1649–165610.1016/j.marpolbul.2009.07.003.CrossrefWeb of ScienceGoogle Scholar

  • Zhang, Q., He, X., & Yan, T. (2015). Differential Decay of Wastewater Bacteria and Change of Microbial Communities in Beach Sand and Seawater Microcosms Environ. Sci. Technol. 49(14): 8531–854010.1021/acs.est.5b01879.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-01-17

Accepted: 2018-04-19

Published Online: 2018-12-03

Published in Print: 2018-12-19

Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 4, Pages 327–336, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0031.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in