Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 47, Issue 4

Issues

Changes in hydrological, physical and chemical properties of water in closed/open coastal lakes due to hydrotechnical structures

Roman Cieśliński
  • Corresponding author
  • Department of Hydrology, Institute of Geography, Faculty of Oceanography and Geography, University of Gdańsk, ul. Jana Bażyńskiego 4, 80-309 Gdańsk, Gdańsk Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-03 | DOI: https://doi.org/10.1515/ohs-2018-0033

Abstract

The purpose of the study was to determine quantitative and qualitative changes in the waters of Lake Jamno in northern Poland due to the presence of new hydrotechnical structures in its drainage basin, with a special focus on the effects of a new storm barrier. The study consisted primarily of a review of measurement data, historical records and fieldwork prior to the construction (2002–2008) and following the construction of the storm barrier (2015). Fieldwork included hydrographic surveys and water sampling for laboratory analysis. The main and most easily discernible effect of the construction is the change in water quality in Lake Jamno. This is particularly true in the case of key indicators related to seawater, including conductivity, whose values changed from brackish to fresh water.

Key words: coastal lakes; hydrochemistry; human impact; storm barriers

References

  • Brauer, C.C., Teuling, A.J., Torfs, P.J. & Uijlenhoet, R. (2013). Investigating storage-discharge relations in a lowland catchment using hydrograph fitting, recession analysis, and soil moisture data. Water Resources Research 49(7): 4257–4264.CrossrefWeb of ScienceGoogle Scholar

  • Choinski, A. & Gogołek, A. (2005). Changes In water chemistry of lake Jamno open the years 1996–2004. Limnological Review 5: 27–37.Google Scholar

  • Choinski, A., Ptak, M. & Strzelczak, A. (2014). Present-day evolution of coastal lakes based on the example of Jamno and Bukowo (the Southern Baltic coast). Oceanological and Hydrobiological Studies 43(2): 178–184.CrossrefWeb of ScienceGoogle Scholar

  • Cieśliński, R. (2004). Chemical classifications of waters of chosen lakes of the central coast of the Polish coastline zone of the Southern Baltic. Limnological Review 4: 57–66.Google Scholar

  • Cieśliński, R. (2007). Natural and anthropogenical threats of lakes of polish coastal zone. Archives of Environmental Protection 33(1): 15–27.Google Scholar

  • Cieśliński, R. (2009a). The course and hydrological effects of the phenomenon of brackish waters intrusions on the Polish coast of the southern Baltic on the example of chosen lagoons. Estuaries and Coast 1: 457–464.Google Scholar

  • Cieśliński, R. (2009b). Hydrological assessment of the Baltic Sea impact on the Polish coastline. GEOLOGIJA 51(3–4): 146–152CrossrefGoogle Scholar

  • Cieśliński, R. (2011). Geographical determinants of hydrochemical variability of lakes of the southern coast of the Baltic Sea University of Gdansk Publishing House, Gdansk (In Polish).Google Scholar

  • Cieśliński, R. & Obolewski, K. (2017). Research of Polish coastal lakes with their classification. In K. Obolewski, A. Astel & R. Kujawa (Eds.), Hydroecological determinants of functioning of southern Baltic coastal lakes (pp. 11–25). PWN, Warsaw.Google Scholar

  • Collins, D.G. & Melack, J.M. (2014). Biological and chemical responses in a temporarily open/closed estuary to variable freshwater inputs. Hydrobiologia 734(1): 97–113.CrossrefWeb of ScienceGoogle Scholar

  • Davidson, N.C., d’Alaffoley, D., Doody, J.P., Way, L.S., Gordon, J. et al. (1991). Nature conservation and estuaries in Great Britain. Estuaries Review Chief Scientist Directorate Nature Conservancy Council Northmister House, Peterborough.Google Scholar

  • Dabrowski, M. (2004). Trends in changes of lake water levels in the Pomerania Lakeland. Limnological Review 4: 75–80.Google Scholar

  • Dubakova, I. & Florova, M. (2004). Balance of major ions In two small integrated monitoring catchments in Latvia. Nordic Hydrological Programme 48(1): 268–276.Google Scholar

  • Dunn, R.J.K., Ali, A., Cemkert, C.J., Teasdale, P.R. & Welsh, D.T. (2007). Short term variability of physico-chemical parameters and the estimated transport of filterable nutrients and chlorophyll-a urbanised Coombabah lake and Coombabah creek system, Southern Moreton Bay, Australia. Journal of Coastal Research 50: 1062–1068.Google Scholar

  • Elliott, M. & Whitfield, A.K. (2011). Challenging paradigms in estuarine ecology and management. Estuarine, Coastal and Shelf Science 94: 306–314.CrossrefWeb of ScienceGoogle Scholar

  • Everett, J.D., Baird, M.E. & Suthers, I.M. (2007). Nutrient and plankton dynamics in an intermittently closed/open lagoon, Smiths Lake, south-eastern Australia: An ecological model. Estuarine, Coastal and Shelf Science 72(4): 690–702.CrossrefWeb of ScienceGoogle Scholar

  • Fichez, R., Archundia, D., Grenz, C., Douillet, P., Mendieta, F.G. et al. (2017). Global climate change and local watershed management as potential drivers of salinity variation in a tropical coastal lagoon (Laguna de Terminos, Mexico). Aquatic Sciences 79(2): 219–230.CrossrefWeb of ScienceGoogle Scholar

  • Gordu, F., Yurtal, R. & Motz, L.H. (2001). Optimization of groundwater use in the Goksu delta at Silifke. First International Conference on Saltwater Intrusion and Coastal Aquifers Monitoring, Modeling, and Management (SWICA-M3), Essaouira, Morocco, Turkey, 1–10.Google Scholar

  • Haines, P.E., Tomlinson, R.B. & Thom, B.G. (2006). Morphometric assessment of intermittently open/closed coastal lagoons in New South Wales, Australia. Estuarine, Coastal and Shelf Science 67(1): 321–332.CrossrefGoogle Scholar

  • Hinwood, J.B. & McLean, E.J. (2015). Predicting the dynamics of intermittently closed/open estuaries using attractors. Coastal Engineering 99: 64–72.CrossrefWeb of ScienceGoogle Scholar

  • Iriarte, A., Villate, F., Uriarte, I. & Arranz, S. (2016). Assessment of the climate and human impact on estuarine water environments in two estuaries of the Bay of Biscay. Oceanological and Hydrobiological Studies 45(4): 505–523.CrossrefWeb of ScienceGoogle Scholar

  • Kamermans, P., Hemmings, M.A. & de Jong, D.J. (1999). Significance of salinity and silicon levels for growth a formely estuarine eelgrass Zosteria marina population (Lake Grevelingen, the Netherlands). Marine Biology 133: 527–539.CrossrefGoogle Scholar

  • Karus, K. & Feldmann, T. (2013). Factors influencing macrophyte metrics in Estonian coastal lakes in the light of ecological status assessment. Hydrobiologia 704(1): 153–163.CrossrefWeb of ScienceGoogle Scholar

  • Kavaliauskiene, J. (1999). Investigations of biodiversity in freshwater ecosystems of Lithuania. The lakes. In Hydrobiological research in the Baltic countries, UNESCO National Commission of Estonia, Latvia and Lithuania (pp. 104–115), Vilnius.Google Scholar

  • Lawrie, R.A., Stretch, D.D. & Perissinotto, R. (2010). The effects of wastewater discharges on the functioning of a small temporarily open/closed estuary. Estuarine, Coastal and Shelf Science 87: 237–245.CrossrefWeb of ScienceGoogle Scholar

  • McSweeney, S.L., Kennedy, D.M., Rutherfurd, I.D. & Stout, J.C. (2017). Intermittently Closed/Open Lakes and Lagoons: Their global distribution and boundary conditions. Geomorphology 292: 142–152.CrossrefWeb of ScienceGoogle Scholar

  • Mollema, P.N, Antonellini, M., Dinelli, E., Gabbianelli, G., Greggio, N. et al. (2013). Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments. Applied Geochemistry 34: 207–221.CrossrefWeb of ScienceGoogle Scholar

  • Morris, B.D. & Turner, I.L. (2010). Morphodynamics of intermittently open–closed coastal lagoon entrances: New insights and a conceptual model. Marine Geology 271: 55–66.CrossrefWeb of ScienceGoogle Scholar

  • Nowicka, B. & Wronko, D. (1997). Hydrological monitoring of Jamno lake Natura Fundation of Environmental Protection, Warsaw.Google Scholar

  • O’Neill, K., Schreider, M., McArthur, L. & Schreide, S. (2015). Changes in the water quality characteristics during a macroalgal bloom in a coastal lagoon. Ocean & Coastal Management 118: 32–36.CrossrefWeb of ScienceGoogle Scholar

  • Paturej, E. (2006). Estuaries of the polish Baltic coastal zone. Baltic Coastal Zone 10: 83–96.Google Scholar

  • Potter, I.C., Chuwen, B.M., Hoeksema, S.D. & Elliott, M. (2010). The concept of an estuary: A definition that incorporates systems which can become closed to the ocean and hypersaline. Estuarine Coastal and Shelf Science 87: 497–500.CrossrefWeb of ScienceGoogle Scholar

  • Pulido-Leboeuf, P. (2004). Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Applied Geochemistry 19(10): 1–11.CrossrefGoogle Scholar

  • Riddin, T. & Adams, J.B. (2008). Influence of mouth status and water level on the macrophytes in a small temporarily open/closed estuary. Estuarine, Coastal and Shelf Science 79(1): 86–92.CrossrefWeb of ScienceGoogle Scholar

  • Sadat-Noori, M., Santos, I.R., Tait, D.R., McMahon, A., Kadel, S. et al. (2016). Intermittently Closed and Open Lakes and/or Lagoons (ICOLLs) as groundwater-dominated coastal systems: Evidence from seasonal radon observations. Journal of Hydrology 535: 612–624.CrossrefWeb of ScienceGoogle Scholar

  • Saintilan, N., Rogers, K., Toms, C., Stein, E.D. & Jacobs, D. (2016). Intermittent estuaries: linking hydro-geomorphic context to climate change resilience. Journal of Coastal Research 75: 133–137.CrossrefWeb of ScienceGoogle Scholar

  • Schallenberg, M., Larned, S.T., Hayward, S. & Arbuckle, C. (2010). Contrasting effects of managed opening regimes on water quality in two intermittently closed and open coastal lakes. Estuarine, Coastal and Shelf Science 86(4): 587–597.CrossrefWeb of ScienceGoogle Scholar

  • Snow, G.C. & Taljaard, S. (2007). Water quality in South African temporarily open/closed estuaries: a conceptual model. African Journal of Aquatic Science 32(2): 99–111.CrossrefGoogle Scholar

  • Spriņe, G., Briede, A., Druvietis, I., Parele, E., Rodionovs, V. et al. (1999). Investigations of biodiversity in freshwater ecosystems of Latvia. The lakes. In Hydrobiological research in the Baltic countries, UNESCO National Commission of Estonia, Latvia and Lithuania (pp. 186–230), Vilnius.Google Scholar

  • Suursaar, Ü, Torn, K., Martin, G., Herkül, K. & Kullas T. (2014). Formation and species composition of stormcast beach wrack in the Gulf of Riga, Baltic Sea. Oceanologia 56(4): 673–695.CrossrefWeb of ScienceGoogle Scholar

  • Timm, T., Kumari, M., Kübar, K., Sohar, K. & Traunspurger, W. (2007). Meiobenthos of some Estonian coastal lakes. Proc. Estonian Acad. Sci. Biol. Ecol. 56(3): 179–195.Google Scholar

  • Westerlund, A., Tuomi, L., Alenius, P., Miettunen, E. & Vankevich, R.E. (2018). Attributing mean circulation patterns to physical phenomena in the Gulf of Finland. Oceanologia 60(1): 16–31CrossrefWeb of ScienceGoogle Scholar

  • Woszczyk, M., Spychalski, W., Lutynska, M. & Cieśliński R. (2010). Temporal trend in the intensity of subsurface saltwater ingressions to coastal lake Sarbsko (northern Poland) during the last few decades. IOP Conf. Series: Earth and Environmental Science 9: 1–7.CrossrefGoogle Scholar

  • www.hydrowskaz.pl – Retrieved November, 20, 2015.

  • Xiang, J., Wang, X.C., Zang, Q., Duan, R. & Wang, N. (2016). Characteristics of a landscape water with high salinity in a coastal city of China and measures for eutrophication control. Ecological Indicators 61(2): 268–273.CrossrefWeb of ScienceGoogle Scholar

  • Zietkowiak, Z. (1983). The variability of conditions and groundwater chemistry Łebska Spit. Koszalin Studies and Research 3: 5–23 (In Polish).Google Scholar

About the article

Received: 2017-11-23

Accepted: 2018-03-16

Published Online: 2018-12-03

Published in Print: 2018-12-19


Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 4, Pages 345–358, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0033.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in