Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies

IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

See all formats and pricing
More options …
Volume 47, Issue 4


Meiobenthic assemblage of the grey mangrove (Avicennia marina) along the Saudi Arabian coast of the Red Sea with emphasis on free-living nematodes

Abdulmohsin Al-Sofyani
  • Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohsen El-Sherbiny
  • Corresponding author
  • Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
  • Department of Marine Sciences, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-03 | DOI: https://doi.org/10.1515/ohs-2018-0034


Spatial variability in the population density of meiofauna and the assemblage of free-living marine nematodes was studied at 20 mangrove sites located along the Saudi Arabian coast of the Red Sea. The total abundance of meiofauna varied between the locations and ranged from 119 to 1380 ind. 10 cm−2. A total of seven main taxa were recorded. Nematodes dominated (64.3%) in all sediment samples. They were followed by harpacticoid copepods (13.2%) and polychaetes (12.9%) with significant differences in their density between the locations surveyed (p < 0.001). The Pearson correlation analysis showed significant positive correlations between the sand fraction and nematodes, harpacticoid copepods and turbellarians. Twenty-five genera of free-living nematodes belonging to 15 families were recorded in the study area. Microlaimidae were the most abundant family, while Xyalidae, Desomodridae and Chromidoridae were the most diverse families. Microlaimus, Halalaimus and Terschellingia were the most frequent genera. ANOSIM values obtained for the distribution of different nematode genera in various habitats showed no significant differences. Feeding types of different nematode genera were also documented and the epistrate feeders along with the deposit feeders were found to be the common feeding types in the present study.

Key words: Meiofauna; nematodes; distribution; diversity; mangrove; Red Sea; Saudi Arabia


  • Abdullah, M.M. & Lee, S.Y. (2017). Structure of mangrove meiofaunal assemblages associated with local sediment conditions in subtropical eastern Australia. Estuar. Coast. Shelf. Sci. 198: 438–449. DOI: 10.1016/j.ecss.2016.10.039.CrossrefGoogle Scholar

  • Abrantes, K. & Sheaves, M. (2009). Food web structure in a near-pristine mangrove area of the Australian Wet Tropics. Estuar. Coast. Shelf. Sci 82(4): 597–607. DOI: 10.1016/j.ecss.2009.02.021.CrossrefGoogle Scholar

  • Ali, M.A.S., Krishnamurthy, K. & Jeyaseelan, M.J.P. (1983). Energy flows through the benthic ecosystem of the mangroves with special reference to nematodes. Mahasagar Bull. Nat. Inst. Oceanogr. 16(3): 317–325.Google Scholar

  • Almahasheer, H., Serrano, O., Duarte, C.M., Arias-Ortiz, A., Masque, P. et al. (2017). Low Carbon sink capacity of Red Sea mangroves. Sci. Rep. 7(1): 9700. DOI: 10.1038/s41598-017-10424-9.PubMedCrossrefGoogle Scholar

  • Alongi, D.M. & Christofferson, P. (1992). Benthic infauna and organism-sediment relations in a shallow, tropical coastal area: influence of out welled mangrove detritus and physical disturbance. Mar. Ecol. Prog. Ser. 81(3): 229–245.CrossrefGoogle Scholar

  • Alongi, D.M. (1987a). Inter-estuary variation and intertidal zonation of free-living nematode communities in tropical mangrove systems. Mar. Ecol. Prog. Ser. 40: 103–114.CrossrefGoogle Scholar

  • Alongi, D.M. (1987b). Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries. Mar. Biol. 95(3): 447–458. DOI: 10.1007/BF00409574.CrossrefGoogle Scholar

  • Alongi, D.M. (1987c). The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries. Oecologia 71: 537–540. DOI: 10.1007/BF00379293.CrossrefGoogle Scholar

  • Alongi, D.M. (1989). The role of soft-bottom benthic communities in tropical mangrove and coral reef ecosystems. Crit. Rev. Aquat. Sci. 1: 243–280.Google Scholar

  • Alongi, D.M. (1990a). The ecology of tropical soft-bottom benthic ecosystems. Oceanogr. Mar. Biol. Annu. Rev. 28: 381–496.Google Scholar

  • Alongi, D.M. (1990b). Community dynamics of free-living nematodes in some tropical mangrove and sandflat habitats. Bull. Mar. Sci. 46: 358–373.Google Scholar

  • Anderson, J.G. & Meadows, P.S. (1978). Microenvironments in marine sediments. Proceedings of the Royal Society of Edinburgh, Section B. Biol. Sci. 76(1–3): 1–16. DOI: 10.1017/S0269727000002761.Google Scholar

  • Ansari, K.G.M.T. & Bhadury, P. (2017). An updated species checklist for free-living marine nematodes from the world’s largest mangrove ecosystem, Sundarbans. Zootaxa 4290(1): 177–191. DOI: 10.11646/zootaxa.4290.1.11.CrossrefGoogle Scholar

  • Ansari, Z.A., Sreepada, R.A., Matondkar, S.G.P. & Parulekar, A.H. (1993). Meiofauna stratification in relation to microbial food in a tropical mangrove mudflat. Trop. Ecol. 34: 63–75.Google Scholar

  • Armenteros, M., Martın, I., Williams, J.P., Creagh, B., Gonzalez-Sanson, G. et al. (2006). Spatial and temporal variations of meiofaunal communities from the western sector of the Gulf of Batabano Cuba. I. Mangrove Systems. Estuaries and Coasts 29: 124–132. DOI: 10.1007/BF02784704.CrossrefGoogle Scholar

  • Austen, M.C. (2004). Natural nematode communities are useful tools to address ecological and applied questions. Nematology Monographs and Perspectives 2: 1–17.Google Scholar

  • Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C. et al. (2011). The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81(2): 169–193. DOI: 10.1890/101510.1.CrossrefGoogle Scholar

  • Barnes, N., Bamber, R.N., Moncrieff, C.B., Sheader, M. & Ferrero, T.J. (2008). Meiofauna in closed coastal saline lagoons in the United Kingdom: Structure and biodiversity of the nematode assemblage. Estuar. Coast. Shelf. Sci 79(2): 328–340. DOI: 10.1016/j.ecss.2008.03.017.CrossrefGoogle Scholar

  • Bhadury, P., Mondal, N., Ansari, K.G.M.T., Philip, P., Pitale, R. et al. (2015). Checklist of free-living marine nematodes from intertidal sites along the central west coast of India. Check List 11(2): 1605. DOI: 10.15560/11.2.1605.CrossrefGoogle Scholar

  • Braeckman, U., Van Colen, C., Soetaert, K., Vincx, M. & Vanaverbeke, J. (2011). Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment. Mar. Ecol. Prog. Ser. 422: 179–191.CrossrefGoogle Scholar

  • Chinnadurai, G. & Fernando, O. (2007). Meiofauna of mangroves of the southeast coast of India with special reference to the free-living marine nematodes assemblage. Estuar. Coast. Shelf Sci. 72: 329–336. DOI: 10.1016/j.ecss.2006.11.004.CrossrefGoogle Scholar

  • Chinnadurai, G. & Fernando, O.J. (2006). Meiobenthos of Cochin mangroves (Southwest coast of India) with special emphasis on free-living marine nematode assemblages. Russ. J. Nematol. 64(2): 127–137.Google Scholar

  • Clarke, K. & Gorley, R. (2006). Primer v6: User Manual/Tutorial Primer-E Ltd, Plymouth.Google Scholar

  • Coull, B.C. & Bell, S.S. (1979). Perspectives of marine meiofaunal ecology. In R.J. Livingston (Eds.), Ecological Processes in Coastal and Marine Systems (pp. 189–216). Marine Science, Vol 10. Springer, Boston, MA. DOI: 10.1007/978-1-46159146-7_10.Google Scholar

  • Coull, B.C. (1999). Role of meiofauna in estuarine soft-bottom habitats. Austral Ecol. 24(4): 327–343. DOI: 10.1046/j.1442-9993.1999.00979.x.CrossrefGoogle Scholar

  • Della Patrona, L., Marchand, C., Hubas, C., Molnar, N., Deborde, J. et al. (2016). Meiofauna distribution in a mangrove forest exposed to shrimp farm effluents (New Caledonia). Mar. Environ. Res. 119: 100–113. DOI: 10.1016/j.marenvres.2016.05.028.CrossrefGoogle Scholar

  • Dernie, K.M., Kaiser, M.J., Richardson, E.A. & Warwick, R.M. (2003). Recovery of soft sediment communities and habitats following physical disturbance. J. Exp. Mar. Bio. Ecol. 285: 415–434. DOI: 10.1016/S0022-0981(02)00541-5.Google Scholar

  • Dye, A.H. & Lasiak, T.A. (1986). Microbenthos and fiddler crabs: trophic interaction in a tropical mangrove sediment. Mar. Ecol. Prog. Ser. 32 (2–3): 259–264.CrossrefGoogle Scholar

  • Dye, A.H. (1978). An ecophysiological study of the meiofauna of the Swartkops Estuary. 2. The meiofauna: composition, distribution, seasonal fluctuation and biomass. Afr. Zool. 13: 19–32.CrossrefGoogle Scholar

  • Dye, A.H. (1983a). Composition and seasonal fluctuations of meiofauna in a southern African mangrove estuary. Mar. Biol. 73 (2): 165–170. DOI: 10.1007/BF00406884.CrossrefGoogle Scholar

  • Dye, A.H. (1983b). Vertical and horizontal distribution of meiofauna in mangrove sediments in Transkei Southern Africa. Estuar. Coast. Shelf Sci. 16: 591–598. DOI: 10.1016/0272-7714(83)90073-2.CrossrefGoogle Scholar

  • Edwards, F.J. (1987). Climate and oceanography. In A.J. Edwards & S.M. Head (Eds.), Key Environments–Red Sea (pp. 45–68). International Union for Conservation of Nature and Natural Resources. IV Series.Google Scholar

  • El-Serehy, H.A., Al-Misned, F.A. & Al-Rasheid, K.A. (2015). Population fluctuation and vertical distribution of meiofauna in the Red Sea interstitial environment. Saudi J. Biol. Sci. 22: 459–465. DOI: 10.1016/j.sjbs.2015.02.018.CrossrefPubMedGoogle Scholar

  • Ferrero, T.J., Debenham, N.J. & Lambshead, P.J.D. (2008). The nematodes of the Thames estuary: Assemblage structure and biodiversity, with a test of Attrill's linear model. Estuar. Coast. Shelf. Sci. 79(3): 409–418. DOI: 10.1016/j.ecss.2008.04.014.CrossrefGoogle Scholar

  • Fonseca, V.G., Carvalho, G.R., Nichols, B., Quince, C., Johnson, H.F. et al. (2014). Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Glob. Ecol. Biogeogr. 23: 1293–1302. DOI: 10.1111/geb.12223.CrossrefGoogle Scholar

  • Gee, J.M. & Somerfield, P.J. (1997). Do mangrove diversity and leaf litter decay promote meiofaunal diversity? J. Exp. Mar. Biol. Ecol. 218(1): 13–33. DOI: 10.1016/S0022-0981(97)00065-8.CrossrefGoogle Scholar

  • Gee, J.M. (1989). An ecological and economic review of meiofauna as food for fish. Zool. J. Linn. Soc. 96: 243–261. DOI: 10.1111/j.1096-3642.1989.tb02259.x.CrossrefGoogle Scholar

  • Gheskiere, T., Vincx, M., Urban-Malinga, B., Rossano, C., Scapini, F. et al. (2005). Nematodes from wave-dominated sandy beaches: diversity, zonation patterns and testing of the isocommunities concept. Estuar. Coast. Shelf. Sci 62(1–2): 365–375. DOI: 10.1016/j.ecss.2004.09.024.CrossrefGoogle Scholar

  • Giere, O. (2013). Meiobenthology: the microscopic fauna in aquatic sediments. Springer Science & Business Media.Google Scholar

  • Gwyther, J. (2000). Meiofauna in phytal-based and sedimentary habitats of a temperate mangrove ecosystem – a preliminary survey. Proc. R. Soc. Vic. 112: 137–151.Google Scholar

  • Hanafy, M.H., Mohammed, D.A. & Ahmad, A.I. (2011). Seasonal distribution of the littoral interstitial meiofauna in the northern Red Sea, Egypt. Egypt. J. Aquat. Biol. Fish. 15(2): 35–51.CrossrefGoogle Scholar

  • Heip, C., Vincx, M. & Vranken, G. (1985). The ecology of marine nematodes. Oceanogr. Mar. Biol. Ann. Rev. 23: 399–489.Google Scholar

  • Hodda, M., Nicholas, W.L. (1985). Meiofauna associated with mangroves in the Hunter River estuary and Fullerton Cove, south-eastern Australia. Aust. J. Mar. Freshwat. Res. 36: 41–50. DOI: 10.1071/MF9850041.CrossrefGoogle Scholar

  • Hodda, M. & Nicholas, W.L. (1986). Temporal changes in littoral meiofauna from the Hunter River Estuary. Aust. J. Mar. Freshwat. Res. 37: 729–741. DOI: 10.1071/MF9860729.CrossrefGoogle Scholar

  • Hopper, B.E., Fell, J.W. & Cefalu, R.C. (1973). Effect of temperature on life cycles of nematodes associated with the mangrove Rhizophora mangle detrital system. Mar. Biol. 23(4): 293–296. DOI: 10.1007/BF00389336.CrossrefGoogle Scholar

  • Hsieh, H.L. (1995). Spatial and temporal patterns of polychaete communities in a subtropical mangrove swamp: influences of sediment and microhabitat. Mar. Ecol. Prog. Ser. 127(1–3): 157–167. DOI: 10.1016/j.ecss.2016.10.039.CrossrefGoogle Scholar

  • Hulings, N.C. (1975). Spatial and quantitative distribution of sand beach meiofauna in the northern Gulf of Aqaba. Rapp. Comm. Int. Mer. Medit. 23: 163–181.Google Scholar

  • Jensen, P. (1987). Feeding ecology of free-living aquatic nematodes. Mar. Ecol. Prog. Ser. 35: 187–196.CrossrefGoogle Scholar

  • Kathiresan, K. & Bingham, B.L. (2001). Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40: 81–251. DOI: 10.1016/S0065-2881(01)40003-4.CrossrefGoogle Scholar

  • Khalil, A.S. (2015). Mangroves of the Red Sea. In: N.M. Rasul & I.C. Stewart (Eds.), The Red Sea (pp. 585–597). Springer, Berlin, Heidelberg.Google Scholar

  • Kumary, K.A. (2008). Diversity of meiobenthic nematodes in the Poonthura estuary (Southwest coast of India). Mar. Biol. Ass. India 50: 23–28.Google Scholar

  • Lalana-Rueda, R. & Gosselck, F. (1986). Investigations of the benthos of mangrove coastal lagoons in Southern Cuba. Int. Revue. Hydrobiol. 71: 779–794. DOI: 10.1002/iroh.19860710605.CrossrefGoogle Scholar

  • McIntyre, A.D. & Murison, D.J. (1973). The meiofauna of a flatfish nursery ground. J. Mar. Biol. Ass. U.K. 53(1): 93–118. DOI: 10.1017/S0025315400056666.CrossrefGoogle Scholar

  • Mirto, S., La Rosa, T., Gambi, C., Danovaro, R. & Mazzola, A. (2002). Nematode community response to fish-farm impact in the western Mediterranean. Environ. Pollut. 116(2): 203–214. DOI: 10.1016/S0269-7491(01)00140-3.PubMedCrossrefGoogle Scholar

  • Moens, T. & Vincx, M. (1997). Observations on the feeding ecology of estuarine nematodes. J. Mar. Biol. Ass. U.K. 77(1): 211–227. DOI: 10.1017/S0025315400033889.CrossrefGoogle Scholar

  • Mokievsky, V.O., Tchesunov, A.V., Udalov, A.A. & Toan, N.D. (2011). Quantitative distribution of meiobenthos and the structure of the free-living nematode community of the mangrove intertidal zone in Nha Trang Bay (Vietnam) in the South China Sea. Russ. J. Mar. Biol. 37(4): 272–283. DOI: 10.1134/S1063074011040109.CrossrefGoogle Scholar

  • Morgans, J.F.C. (1956). Notes on the analysis of shallow-water soft substrata. J. Anim. Ecol. 25(2): 367–387.CrossrefGoogle Scholar

  • Morrisey, D.J., Swales, A., Dittmann, S., Morrison, M.A., Lovelock, C.E. et al. (2010). The ecology and management of temperate mangroves. Oceanogr. Mar. Biol. Annu. Rev. 48: 43–160.Google Scholar

  • Nagelkerken, I.S.J.M., Blaber, S.J.M., Bouillon, S., Green, P., Haywood, M. et al. (2008). The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat. Bot. 89(2): 155–185. DOI: 10.1016/j.aquabot.2007.12.007.CrossrefGoogle Scholar

  • Nascimento, F.J., Näslund, J. & Elmgren, R. (2012). Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol. Oceanogr. 57(1): 338–346. DOI: 10.4319/lo.2012.57.1.0338.CrossrefGoogle Scholar

  • Netto, S. & Gallucci, F. (2003). Meiofauna and macrofauna communities in a mangrove from the Island of Santa Catarina, South Brazil. Hydrobiologia 505: 159–170. DOI: 10.1023/B:HYDR.0000007304.22992.b2.CrossrefGoogle Scholar

  • Nicholas, W., Elek, J., Stewart, A. & Marples, T. (1991). The nematode fauna of a temperate Australian mangrove mudflat; its population density, diversity and distribution. Hydrobiologia 209: 13–27. DOI: 10.1007/BF00006714.CrossrefGoogle Scholar

  • Ólafsson, E. & Moore, C. (1990). Control of meiobenthic abundance by macroepifauna in a subtidal muddy habitat. Mar. Ecol. Prog. Ser. 65(3): 241–249.CrossrefGoogle Scholar

  • Ólafsson, E. (1995). Meiobenthos in mangrove areas in eastern Africa with emphasis on assemblage structure of free-living marine nematodes. Hydrobiologia 312(1): 47–57. DOI: 10.1007/BF00018886.CrossrefGoogle Scholar

  • Ólafsson, E., Carlstrom, S. & Nadro, S. (2000). Meiobenthos of hypersaline tropical mangrove sediment in relation to spring tide undulation. Hydrobiologia 426(1): 57–64. DOI: 10.1023/A:1003992211656.CrossrefGoogle Scholar

  • Pagliosa, P.R. (2005). Another diet of worms: the applicability of polychaete feeding guilds as a useful conceptual framework and biological variable. Mar. Ecol. 26(3–4): 246–254. DOI: 10.1111/j.1439-0485.2005.00065.x.CrossrefGoogle Scholar

  • Parker, J.G. (1983). A comparison of methods used for the measurement of organic matter in marine sediment. Chem. Ecol. 1(3): 201–210. DOI: 10.1080/02757548308070802.CrossrefGoogle Scholar

  • Pinto, T., Austen, M., Warwick, R., Somerfield, P., Esteves, A. et al. (2013). Nematode diversity in different microhabitats in mangrove region. Mar. Ecol. 34(3): 257–268. DOI: 10.1111/maec.12011.CrossrefGoogle Scholar

  • Platt, H.M. & Warwick, R.M. (1983). Free living marine nematodes. Part 1: British enoplids. Pictorial key to world genera and notes for the identification of British species Cambridge University Press, for the Linnean Society of London and the Estuarine and Brackish-water Sciences Association.Google Scholar

  • Platt, H.M. & Warwick, R.M. (1988). Free-living marine nematodes. Part II: British chromadorids Brill/Backhuys, for the Linnean Society of London and the Estuarine and Brackish-Water Sciences Association.Google Scholar

  • Polidoro, B.A., Carpenter, K.E., Collins, L., Duke, N.C., Ellison, A.M. et al. (2010). The loss of species: mangrove extinction risk and geographic areas of global concern. PloS ONE 5(4): e10095. DOI: 10.1371/journal.pone.0010095.PubMedCrossrefGoogle Scholar

  • Pusceddu, A., Gambi, C., Corinaldesi, C., Scopa, M. & Danovaro, R. (2014). Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions. PLoS ONE 9(3): e91056. DOI: 10.1371/journal.pone.0091056.PubMedCrossrefGoogle Scholar

  • Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. Washington: United States Salinity Laboratory, 1954. 160p. USDA. Agriculture Handbook 60.Google Scholar

  • Riera, P. & Hubas, C. (2003). Trophic ecology of nematodes from various microhabitats of the Roscoff Aber Bay (France): importance of stranded macroalgae evidenced through δ13C and δ15N. Mari. Ecol. Prog. Ser. 260: 151–159.CrossrefGoogle Scholar

  • Robertson, A. & Duke, N. (1987). Mangrove as nursery sites: comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical Australia. Mar. Biol. 96(2): 196–205. DOI: 10.1007/BF00427019.Google Scholar

  • Robertson, A. & Duke, N. (1990). Mangrove fish communities in tropical Queensland, Australia: spatial and temporal patterns in densities, biomass and community structure. Mar. Biol. 104(3): 369–379. DOI: 10.1007/BF01314339.CrossrefGoogle Scholar

  • Rodrìguez, J.G., Lastra, M. & López, J. (2003). Meiofauna distribution along a gradient of sandy beaches in northern Spain. Estuar. Coast Shelf Sci. 58: 63–69.CrossrefGoogle Scholar

  • Sabeel, A.O.R. 2015 Variation in distribution of Sudanese mangroves and their ecological significance for benthic fauna Unpublished doctoral dissertation, Ghent University, Ghent, Belgium.Google Scholar

  • Sabeel, R.A.O. & Vanreusel, A. (2015). Potential impact of mangrove clearance on biomass and biomass size spectra of nematode along the Sudanese Red Sea coast. Mar. Environ. Res. 103: 46–55. DOI: 10.1016/j. marenvres.2014.11.003.CrossrefPubMedGoogle Scholar

  • Sahoo, G., Suchiang, S.R. & Ansari, Z.A. (2013). Meiofauna-mangrove interaction: a pilot study from a tropical mangrove habitat. Cah. Biol. Mar. 54: 349–358.Google Scholar

  • Saifullah, S. (1996). Mangrove ecosystem of Saudi Arabian Red Sea coast – An overview. J. KAU Mar. Sci. 7: 263–270.CrossrefGoogle Scholar

  • Sajan, S., Joydas, T.V. & Damodaran, R. (2010). Meiofauna of the western continental shelf of India, Arabian Sea. Estuar. Coast. Shelf. Sci. 86: 665–674. DOI: 10.1016/j. ecss.2009.11.034.CrossrefGoogle Scholar

  • Sarkar, S.K., Bhattacharya, A., Giri, S., Battacharya, B., Sarkar, D. et al. (2005). Spatiotemporal variation in benthic polychaetes (Annelida) and relationships with environmental variables in a tropical estuary. Wetl. Ecol. Manag. 13(1): 55–67. DOI: 10.1007/s11273-003-5067-y.CrossrefGoogle Scholar

  • Sasekumar, A. (1994). Meiofauna of a mangrove shore on the west coast of peninsular Malaysia. Raffles Bull. Zool. 42(4): 901–915.Google Scholar

  • Schratzberger, M. & Ingels, J. (2018). Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502: 12–25. DOI: 10.1016/j.jembe.2017.01.007.CrossrefGoogle Scholar

  • Semprucci, F., Balsamo, M. & Frontalini, F. (2014). The nematode assemblage of a coastal lagoon (Lake Varano, southern Italy): ecology and biodiversity patterns. Scientia Marina 78(4): 579–588. DOI: 10.3989/scimar.04018.02A.CrossrefGoogle Scholar

  • Semprucci, F., Colantoni, P., Baldelli, G., Rocchi, M. & Balsamo, M. (2010). The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Mar. Ecol. 31(4): 592–607. DOI: 10.1111/j.1439-0485.2010.00383.x.CrossrefGoogle Scholar

  • Semprucci, F., Sbrocca, C., Rocchi, M. & Balsamo, M. (2015). Temporal changes of the meiofaunal assemblage as a tool for the assessment of the ecological quality status. J. Mar. Biol. Assoc. U.K. 95(2): 247–254. DOI: 10.1017/ S0025315414001271.CrossrefGoogle Scholar

  • Somerfield, P.J. & Warwick, R.M. (1996). Meiofauna in marine pollution monitoring programmes. A laboratory manual. Directorate of Fisheries Research (MAFF), Lowestoft (UK). 71Google Scholar

  • Somerfield, P., Gee, J. & Aryuthaka, C. (1998). Meiofaunal communities in a Malaysian mangrove forest. J. Mar. Biol. Assoc. U.K. 78(3): 717–732. DOI: 10.1017/ S0025315400044738.CrossrefGoogle Scholar

  • Steyaert, M., Garner, N., van Gansbeke, D. & Vincx, M. (1999). Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. J. Mar. Biol. Assoc. U.K. 79(2): 253–264.CrossrefGoogle Scholar

  • Thilagavathi, B., Das, B., Saravanakumar, A. & Raja, K. (2011). Benthic meiofaunal composition and community in the Sethukuda mangrove area and adjacent open sea, east coast of India. Ocean Sci. J. 46(2): 63–72. DOI: 10.1007/s12601-011-0006-y.CrossrefGoogle Scholar

  • Tietjen, J.H. & Alongi, D.M. (1990). Population growth and effects of nematodes on nutrient regeneration and bacteria associated with mangrove detritus from northeastern Queensland (Australia). Mar. Ecol. Prog. Ser. 68(1–2): 169–180.CrossrefGoogle Scholar

  • Tolhurst, T.J., Defew, E.C. & Dye, A. (2010). Lack of correlation between surface macrofauna, meiofauna, erosion threshold and biogeochemical properties of sediments within an intertidal mudflat and mangrove forest. Hydrobiologia 652(1): 1–13. DOI: 10.1007/s10750-010-0311-y.CrossrefGoogle Scholar

  • Vanaverbeke, J., Gheskiere, T., Steyaert, M. & Vincx, M. (2002). Nematode assemblages from subtidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. J. Sea Res. 48(3): 197–207. DOI: 10.1016/S1385-1101(02)00165-X.CrossrefGoogle Scholar

  • Vanaverbeke, J., Merckx, B., Degraer, S. & Vincx, M. (2011). Sediment-related distribution patterns of nematodes and macrofauna: Two sides of the benthic coin? Mar. Environ. Res. 71(1): 31–40. DOI: 10.1016/j.marenvres.2010.09.006.PubMedCrossrefGoogle Scholar

  • Vanhove, S., Vincx, M., Vangansbeke, W., Gijselinck, W. & Schram, D. (1992). The meiobenthos of five mangrove vegetation types in Gazi Bay, Kenya. Hydrobiologia 247: 99–108. DOI: 10.1007/978-94-017-3288-8_10.CrossrefGoogle Scholar

  • Warwick, R.M., Platt, H.M. & Somerfield, P.J. (1998). Free living marine nematodes. Part III. British Monhysterida. Synopses of the British fauna no 53. Field Studies Council, Shrewsbury.Google Scholar

  • Wieser, W. (1953). Die Beziehung zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark. Zool. 4(2): 439–484.Google Scholar

  • Woodward, G. (2010). Integrative ecology: from molecules to ecosystems (Vol. 43). Academic Press.Google Scholar

  • Xuan, Q.N., Vanreusel, A., Thanh, N.V. & Smol, N. (2007). Biodiversity of meiofauna in the intertidal Khe Nhan mudflat, Can Gio mangrove forest, Vietnam with special emphasis on free living nematodes. Ocean Sci. J. 42(3): 135–152. DOI: 10.1007/BF03020918.CrossrefGoogle Scholar

  • Zhou, H. (2001). Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong. J. Exp. Mar. Biol. Ecol. 256(1): 99–121. DOI: 10.1016/S0022-0981(00)00310-5.CrossrefGoogle Scholar

About the article

Received: 2017-12-31

Accepted: 2018-03-28

Published Online: 2018-12-03

Published in Print: 2018-12-19

Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 4, Pages 359–375, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0034.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in