Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Oceanological and Hydrobiological Studies


IMPACT FACTOR 2017: 0.461
5-year IMPACT FACTOR: 0.604

CiteScore 2017: 0.64

SCImago Journal Rank (SJR) 2017: 0.249
Source Normalized Impact per Paper (SNIP) 2017: 0.463

Online
ISSN
1897-3191
See all formats and pricing
More options …
Volume 47, Issue 4

Issues

Postglacial evolution of a small lake in the South Baltic coastal zone based on geochemical, pollen and subfossil Cladocera analysis

Monika Niska
  • Corresponding author
  • Institute of Geography and Regional Studies, Pomeranian University in Słupsk, ul. Partyzantów 27, 76-200 Słupsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Gadziszewska
  • Institute of Geography and Regional Studies, Pomeranian University in Słupsk, ul. Partyzantów 27, 76-200 Słupsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Jonczak
  • Department of Soil Environment Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wacław Florek
  • Institute of Geography and Regional Studies, Pomeranian University in Słupsk, ul. Partyzantów 27, 76-200 Słupsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bogusława Kruczkowska
  • Department of Soil Environment Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-03 | DOI: https://doi.org/10.1515/ohs-2018-0036

Abstract

The paper presents sedimentary records acquired as part of the research on the coastal cliff located between 221.3 and 221.4 km of the Slovincian (Słowinskie) Coast near Debina. Palynological and subfossil Cladocera analysis of sediments combined with geochemical data proves the existence of varying environmental conditions that occurred depending on the climate fluctuation. The Debina reservoir was formed in the Late Glacial period. Mud and gyttja were deposited in an initially cold proglacial lake. Species of Cladocera identified in this period indicate a deeper oligotrophic reservoir. The end of the Late Glacial cooling inhibited the development of fauna in the reservoir. Climate change at the beginning of the Holocene improved the habitat conditions in the Debina paleolake, which is reflected in the growth of zooplankton biodiversity and enrichment of the aquatic pollen content. We distinguished three phases that illustrate the evolution of the studied aquatic-mire ecosystem. In the following periods, the trophic level in the reservoir increased and significant water-level fluctuations led to periodic transformations of reservoirs into peat bogs. Gradually, the water-level lowering and the intensification of eolian processes led to terrestrialization of the paleolake.

Key words: Late Glacial-Holocene transition; multi-proxy analysis; cliff paleolake; Polish Baltic Coast

References

  • Baranowski, D. (2008). The climate of Łeba. Baltic Coastal Zone 12: 75–84.Google Scholar

  • Barthelmes, A., de Klerk, P., Prager, A., Theuerkauf, M., Unterseher, M. et al. (2012). Expanding NPP analysis to eutrophic and forested sites: Significance of NPPs in Holocene wood peat section (NE Germany). Review of Palaeobotany and Palynology 186: 22–37.CrossrefGoogle Scholar

  • Błaszkiewicz, M. (2011). Timing of the final disappearance of permafrost in the central European Lowland, as reconstructed from the evolution of lakes in N Poland. Geological Quarterly 55: 361–374.Google Scholar

  • Blott, S.J. & Pye, K. (2001). Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26: 1237–1248.CrossrefGoogle Scholar

  • Borówka, R.K. (2005). Budowa geologiczna i rozwój rzezby Pomorza Zachodniego. In R.K. Borówka & S. Musielak (Eds.), Srodowisko przyrodnicze wybrzezy Zatoki Pomorskiej i Zalewu Szczecinskiego (pp. 5–18). Szczecin: Oficyna In Plus.Google Scholar

  • Borówka, R. (2007).Geochemiczne badania osadów jeziornych strefy umiarkowanej.. Studia Limnologica et Telmatologica 1(1): 33–42.Google Scholar

  • Bronk Ramsey, C. (2013). OxCal. Version 4.2.3 Oxford Radiocarbon Accelerator Unit Research Laboratory for Archaeology, Oxford.Google Scholar

  • Brykczynska, E. (1978). Próba odtworzenia rozwoju roslinnosci w póznym glacjale i holocenie w okolicach Niechorza na Pomorzu Zachodnim. Kwart. Geol. 2: 361–367.Google Scholar

  • Duigan, C.A. (1992). The ecology and distribution of the littoral freshwater Chydoridae (Branchiopoda, Anomopoda) of Ireland with taxonomic comments on some species. Hydrobiologia 241: 1–70.CrossrefGoogle Scholar

  • Dybova-Jachowicz, S. & Sadowska, A. (2003). Palinologia Kraków. Institute of Botany Polish Academy of Sciences.Google Scholar

  • Dziadowiec, H. & Gonet, S.S. (1999). Przewodnik metodyczny do badan materii organicznej gleb Prace Komisji Naukowych PTG 120.Google Scholar

  • Faegri, K. & Iversen J. (1989). Textbook of Pollen Analysis Chichester-Singapore: IV ed. J Wiley & Sons Ltd.Google Scholar

  • Florek, W., Kaczmarzyk, J. & Majewski M. (2010). Dynamics of the Polish Coast east of Ustka. Geographia Polonica 83(1): 51–60.Google Scholar

  • Flössner, D. (1964). Zur Cladoceranfauna des Stechlin-Gebietes. II. Okologische Untersuchungen über die litoralen Arten. Limnologica 2(1): 35–103.Google Scholar

  • Flössner, D. (2000). Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas (pp. 428). Leiden: Backhuys Publishers.Google Scholar

  • Folk, R.L. & Ward, W. (1957). Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology 27: 3–26.CrossrefGoogle Scholar

  • Frey, D.G. (1986). Cladocera analysis. In B.E. Berglund (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 667–692).Google Scholar

  • Goulden, C.E. (1964). The history of the cladoceran fauna of Esthwaite Water (England) and its limnological significance. Arch. Hydrobiol. 60: 1–53.Google Scholar

  • Grudzinska, I., Vassiljev, J., Saarse, L., Reitalu, T. et al. (2017). Past environmental change and seawater intrusion into coastal Lake Lilaste, Latvia. Journal Paleolimnology 57: 257–271.CrossrefGoogle Scholar

  • Hofmann, W. (1986). Developmental history of the Grosser Plöner See and the Schöhsee (north Germany): cladoceran analysis, with special reference to eutrophication. Arch. Hydrobiol. Suppl. 74: 259–287.Google Scholar

  • Hofmann, W. (2000). Response of the chydorid faunas to rapid climatic changes in four alpine lakes at different altitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 159(3–4): 281–292.CrossrefGoogle Scholar

  • Jasiewicz, J. (2005). Stratygrafia glin morenowych i struktura glacitektoniczna gardnienskiej moreny czołowej. Prace Komisji Geograficzno-Geologicznej Poznanskiego Towarzystwa Przyjaciół Nauk 37 (pp.122). Poznan.Google Scholar

  • Kopczynska-Lamparska, K. (1976). Radiocarbon datings of the Late Glacial and Holocene of Western Pomerania. Acta Geol. Pol. 26(3): 413–418.Google Scholar

  • Kopczynska-Lamparska, K., Ciesla, A., Marciniak, B., Skompski, S. & Szeroczynska, K. (1983). Stratigraphie der spätglazialen Sedimente und Eisabbau in der Umgebung von Niechorze /NW-Pomorze, VR Polen/. Das Jungquartär und seine Nutzung (pp. 58–65). Haack Gotha.Google Scholar

  • Korhola, A. (1990). Paleolimnology and hydroseral development of the Kotasuo Bog, Southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fenn 155: 5–40.Google Scholar

  • Korhola, A. & Rautio, M. (2001). Cladocera and other branchiopod crustaceans. In: J.P. Smol, H.J.B. Birks & W.M. Last (Eds.), Tracking Environmental Change Using Lake Sediments, Zoological Indicators 4 (pp. 5–41). Dordrecht: Kluwer Academic Publishers.Google Scholar

  • Kruczkowska, B., Jonczak, J. & Gadziszewska, J. (2017). Characteristics of permafrost-affected soil in the cliff of central part of Polish Baltic coastal zone. Journal of Soils and Sediments 17(4): 960–973.CrossrefGoogle Scholar

  • Latałowa, M. (1982). Major aspects of the vegetational history in the eastern Baltic Coastal Zone of Poland. Acta Palaeobotanica 12(1): 47–63.Google Scholar

  • Latałowa, M. & Tobolski, K. (1989). Type region P-u: Baltic Shore. Acta Palaeobotanica 29(2): 109–114.Google Scholar

  • Latałowa, M. & Swieta, J. (2003). Póznoglacjalna i holocenska sukcesja roslinnosci lokalnej na obszarze Zalewu Szczecinskiego. In R.K. Borówka & A. Witkowski (Eds.), Człowiek i srodowisko przyrodnicze Pomorza Zachodniego II Srodowisko abiotyczne (pp. 123–129). Szczecin: Oficyna In Plus.Google Scholar

  • Magny, M. 2004. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113: 65–79.CrossrefGoogle Scholar

  • Marsz, A. & Tobolski, K. (1993). Osady póznoglacjalne i holocenskie w klifie miedzy Ustka a ujsciem Potoku Orzechowskiego. In: W. Florek (Ed.), Geologia i geomorfologia srodkowego Pobrzeza i południowego Bałtyku (pp. 201–250). Słupsk. Pomeranian University in Słupsk.Google Scholar

  • Mianowicz, K. & Cedro, B. (2013). Holocenskie zdarzenia paleohydrologiczne, zarejestrowane w subfosylnych osadach okolic Mrzezyna: (srodkowa czesc Wybrzeza Trzebiatowskiego): na podstawie analizy szczatków makroskopowych roslin i zwierzat z profilu T28. Geologia i geomorfologia srodkowego Pobrzeza i południowego Bałtyku 10 (pp. 99–117). Słupsk. Pomeranian University in Słupsk.Google Scholar

  • Miola, A., Bondesan, A., Corain, L., Favaretto, S., Mozzi, P. et al. (2006). Wetlands in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: Interplay between vegetation, hydrology and sedimentary environment. Review of Palaeobotany and Palynology 141: 53–81.CrossrefGoogle Scholar

  • Miotk-Szpiganowicz, G. (2005). Analiza pyłkowa osadów biogenicznych strefy brzegowej srodkowego wybrzeza południowego Bałtyku. In W. Florek (Eds.), Geologia i Geomorfologia Pobrzeza Południowego Bałtyku 6 (pp. 39–49). Słupsk. Pomeranian University in Słupsk.Google Scholar

  • Nalepka, D. & Walanus, A. (2003). Data processing in pollen analysis. Acta Palaeobotanica 43(1): 125–134.Google Scholar

  • Olszak, I.J., Florek, W., Seul, C. & Majewski, M. (2008). Stratygrafi a i litologia mineralnych osadów wystepujacych w klifach srodkowej czesci polskiego wybrzeza Bałtyku. Landform Analysis 7: 113–118.Google Scholar

  • Olszak, I.J., Florek, W. & Mystkowska, A. (2012). Stratygrafia i litologia osadów czwartorzedowych we wschodniej czesci klifu orzechowskiego i ich implikacje paleogeograficzne. In W. Florek (Ed.), Geologia i geomorfologia Pobrzeza i południowego Bałtyku 9 (pp. 45–56). Słupsk. Pomeranian University in Słupsk.Google Scholar

  • Pals, J.P., van Geel, B. & Delfos, A. (1980). Palaeoecological studies in the Klikkeweel bog near Hoogkarspel (Noord Holland). Review of Palaeobotany and Palynology 30: 371–418.CrossrefGoogle Scholar

  • Petelski, K. (1985). Budowa geologiczna moreny czołowej i niecki koncowej lobu gardzienskiego. Biuletyn Instytutu Geologicznego 348: 89–121.Google Scholar

  • Petelski, K. (2006). Objasnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000, arkusz Smołdzino Warszawa: Polish Geological Institute.Google Scholar

  • Pedziszewska, A., Tylmann, W., Witak, M., Piotrowska, N., Maciejewska, E. et al. (2015). Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of lake Suminko in the Kashubian lake District (N Poland). Review of Palaeobotany and Palynology 216: 55–75.CrossrefGoogle Scholar

  • Pienitz, R. & Smol, J.P. (1993). Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270: 391–404.Google Scholar

  • Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G. et al. (2013). IntCal13 and marine 13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55: 1869–1887.CrossrefGoogle Scholar

  • Rotnicki, K. & Borówka, R.K. (1994). Stratigraphy, paleogeography and dating of the North Polish Stage in the Gardno-Łeba Coastal Plain. In K. Rotnicki (Ed.), Changes in the Polish Coastal Zone (pp. 84–88). Poznan: Adam Mickiewicz University Press.Google Scholar

  • Saarse, L., Vassiljev, J. & Miidel, A. (2003). Simulation of the Baltic Sea Shorelines in Estonia and Neighbouring areas. Journal of Coastal Research 19: 261–268.Google Scholar

  • Sarmaja-Korjonen, K. (2003). Chydorid ephippia as indicators of environmental change- biostratigraphical evidence from two lakes in southern Finland. The Holocene 13: 691–700.CrossrefGoogle Scholar

  • Stockmarr, J. (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 615–621.Google Scholar

  • Szeroczynska, K. (1985). Cladocera as ecologic indicator in late Quaternary lacustrine sediments in Northern Poland. Acta Palaeontologica Polonica 30 (1–2): 3–69.Google Scholar

  • Szeroczynska, K. (1995). Cladocera w osadach Jeziora Biskupinskiego. In W. Niewiarowski (Ed.), Zarys zmian srodowiska geograficznego okolic Biskupina pod wpływem czynników naturalnych i antropogenicznych w póznym glacjale i holocenie (pp. 181–199). Torun: O.W. Turpress.Google Scholar

  • Szeroczynska, K. (1998). Cladocerans (Cladocera, Crustacea) as a reference in lake sediment studies. Studia Geologica Polonica 112: 9–28.Google Scholar

  • Szeroczynska, K. (2003). Cladoceran succession in lakes and peat bogs of Łeczna-Włodawa Lake District. Limnological Review 3: 235–242.Google Scholar

  • Szeroczynska, K. & Sarmaja-Korjonen, K. (2007). Atlas of subfossil Cladocera from central and northern Europe Friends of Lower Vistula Society (pp. 87). Swiecie.Google Scholar

  • Szeroczynska, K. & Zawisza, E. (2007). Paleolimnology – history of lake development in Poland based on cladoceran fauna. Studia Limnologica et Telmatologica 1(1): 51–59.Google Scholar

  • Tomczak, A. (1993). Datowane metoda 14C wychodnie utworów organicznych na brzegu morskim miedzy Rowami a jeziorem Kopan, In W. Florek (Ed Geologia i geomorfologia srodkowego Pobrzeza i południowego Bałtyku (pp. 187–199). Słupsk. Pomeranian University in Słupsk.Google Scholar

  • Uscinowicz, S. (2003). Relative sea-level changes, glacioisostatic rebound and shore-line displacement in the southern Baltic. Polish Geological Institute Special Papers 10: 1–79.Google Scholar

  • Uscinowicz, S. (2006). A relative sea-level curve for the Polish Southern Baltic Sea. Quaternary International 145–146: 86–105.Google Scholar

  • Van Geel, B. (1978). A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology 25: 1–120.CrossrefGoogle Scholar

  • Van Geel, B. & Bohncke, S.J.P. (1981). A palaeoecological study of an upper Late Glacial and Holocene sequence from “De Borchert”, The Netherlands. Review of Palaeobotany and Palynology 31: 367–448.Google Scholar

  • Van Geel, B., Coope, G.R. & van der Hammen, T. (1989). Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (the Netherlands Review of Palaeobotany and Palynology 60: 25–129.CrossrefGoogle Scholar

  • Van Reeuvijk, L.P. (2002). Procedures for soil analysis. Sixth edition. Wageningen: ISRiC, FAO.Google Scholar

  • Whiteside, M.C. (1970). Danish chydorid Cladocera: modern ecology and core studies. Ecolog. Monogr 40: 79–118.CrossrefGoogle Scholar

  • Whiteside M.C. & Swindoll M.R. (1988). Guidelines and limitations to cladoceran paleoecological interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 405–412.CrossrefGoogle Scholar

  • Wojciechowski, A. (2012). Malakofauna póznoglacjalnych osadów słodkowowdnych z klifu w Orzechowie. In W. Florek (Ed.), Geologia i geomorfologia Pobrzeza i południowego Bałtyku 9 (pp. 219–229). Słupsk. Pomeranian University in Słupsk.Google Scholar

  • Wróblewski, R., Fedorowicz, S. & Kamienska, K. (2013). Holocene sediments of the Ustka cliff (Northern Poland) in view of radiometric dating. Geochronometria 40(3): 187–194.CrossrefGoogle Scholar

  • Zawadzka, E. (2001). Wpływ rzezby dna oraz miazszosci osadów litoralnych pobrzeza Bałtyku południowego na dynamike brzegów. In W. Florek (Eds.), Geologia i geomorfologia Pobrzeza i południowego Bałtyku 4 (pp. 91–107). Słupsk. Pomeranian University in Słupsk.Google Scholar

  • Zawisza, E., Cedro, B. (2012). Sukcesja subfosylnej fauny wioslarek (Cladocera, Crustacea) w osadach kopalnej czesci rynny Samowa (profil T28) w Póznoglacjalne i holocenskie przemiany srodowiska przyrodniczego okolic Mrzezyna.In B. Cedro (Eds.), Development of water bodies Samowo drainage paleochannels in the Late Glacial and Holocene (pp. 122). Szczecin. Zapol Publisher.Google Scholar

About the article

Received: 2018-02-28

Accepted: 2018-04-25

Published Online: 2018-12-03

Published in Print: 2018-12-19


Citation Information: Oceanological and Hydrobiological Studies, Volume 47, Issue 4, Pages 384–397, ISSN (Online) 1897-3191, ISSN (Print) 1730-413X, DOI: https://doi.org/10.1515/ohs-2018-0036.

Export Citation

© 2018 Faculty of Oceanography and Geography, University of Gdańsk, Poland.Get Permission

Comments (0)

Please log in or register to comment.
Log in